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Introduction

Mission Statement:

GWRI strives to improve the science and practice of water resources planning and management in ways that
balance quality of life, environmental sustainability, and economic growth. GWRI pursues this mission
through its education, research, information dissemination, and technology/knowledge transfer programs at
the state, national, and international levels.

Organizational Structure: The GWRI organizational structure includes a Director, Associate Director,
Assistant Director, Advisory Board, and technical support staff. The technical support staff comprises several
Ph.D. graduate students who work on GWRI projects while carrying out doctoral research, and information
technology support staff. The Advisory Board includes representatives from major state and federal water
agencies as well as environmental and citizen groups. At Georgia Tech, GWRI reports to the Senior
Vice-Provost for Research under the Office of the Provost.

Research Program Sponsorship and Administration: GWRI activities are sponsored by (i) the Department of
the Interior/USGS as part of the state and national research programs, and (ii) other national and international
funding agencies and organizations supporting research in water related areas. Through its annual state and
national competitive programs, GWRI provides research awards to Georgia Universities. The award process
includes submission of technical proposals, technical peer reviews, and reviews for relevance to Georgia
needs by the State Environmental Protection Division (Georgia EPD).

Other External Funding: In addition to the 104B and 104G programs, GWRI generates additional funding
through participation in competitive national and international research programs. Recent funding has been
provided by the Georgia Environmental Protection Division, the California Energy Commission, NOAA, and
the ACF Stakeholders. GWRI involvement in national and international research activities is crucial to
maintaining the expert capacity and funding portfolio necessary to provide quality services to the state of
Georgia and all other sponsors.

FY2014 RESEARCH PROJECTS THROUGH 104B PROGRAM

(1) Validation of Oysters as Biomonitors of Pharmaceutical Pollution in Georgia; M. Black; University of
Georgia.

(2) The effect of salt marsh hydrodynamics on estuarine flow; Improvement and Uncertainty Assessment; K.
Haas and D. Webster; Georgia Institute of Technology.

(3) Implications of eutrophication and climate change in promoting toxic cyanobacterial blooms in
agricultural ponds across Georgia; S. Wilde and D. Mishra; University of Georgia.

(4) Baseline Conservation Analysis for Agricultural Irrigation in Priority Watersheds of the Lower Flint River
Basin; M. Masters; Albany State University.

EXTENDED FY2013 RESEARCH PROJECTS THROUGH 104B PROGRAM

(1) Unimpaired Flows for the ACF River Basin: Improvement and Uncertainty Assessment, A. Georgakakos
and M. Kistenmacher, sponsored by USGS under grant #1266663 (Project# 2013GA333B).
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(2) Tracking the impact of on-site wastewater treatment systems on stream water quality in the Metro-Atlanta
area, M. Habteselassie and D. Radcliffe, sponsored by USGS under grant #1266663 (Project# 2013GA330B).

OTHER RESEARCH PROJECTS AND ACCOMPLISHMENTS

(1) Technical Support for the Development of a Sustainable Water Management Plan for the
Apalachicola-Chattahoochee-Flint (ACF) River Basin, Aris Georgakakos PI, Georgia Institute of Technology,
sponsored by the ACF Stakeholders.

RECENT PUBLICATIONS

Kistenmacher, M., and A.P. Georgakakos, “Ensemble Forecasting of Water Resources Systems, Water
Resources Research, doi: 10.1002/2014WR016564, 2015.

Sharif, H.E., J. Wang, and A. P. Georgakakos, “Modeling regional crop yield and irrigation demand using
SMAP type of soil moisture data”, Journal of Hydrometeorology, 16(2), doi: 10.1175/JHM-D-14-0034.1,
2015.

Georgakakos, A.P., P. Fleming, M. Dettinger, C. Peters-Lidard, T.C. Richmond, K. Reckhow, K. White, and
D. Yates: Water Resources Chapter, 2014 National Climate Assessment Draft,
http://ncadac.globalchange.gov, 2014.

Georgakakos, A.P., H. Yao, and K.P. Georgakakos, “Ensemble streamflow prediction adjustment for
upstream water use and regulation”, Journal of Hydrology, doi: 10.1016/j.jhydrol.2014.06.044, 2014.

Kim, D.H., and A.P. Georgakakos, “Hydrologic River Routing using Nonlinear Cascaded Reservoirs,” Water
Resources Research, doi: 10.1002/2014WR015662, 2014.

Chen, C-J., and A.P. Georgakakos, “Seasonal Prediction of East African Rainfall,” International Journal of
Climatology, doi: 10.1002/joc.4165, 2014.

Climate of the Southeast United States: Variability, Change, Impacts, and Vulnerability, co-author of Chapter
10, “Impacts of Climate Change and Variability on Water Resources in the Southeast USA,” Island Press,
Washington DC, 341p, 2013.

Chen, C-J., and A.P. Georgakakos, “Hydro-Climatic Forecasting Using Sea Surface
Temperatures—Methodology and Application for the Southeast U.S.,” Journal of Climate Dynamics, doi:
10.1007/s00382-013-1908-4, 2013.
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Research Program Introduction

Four research projects were funded through the 104B Program (each at $18,000) in FY2014:

(1) Validation of Oysters as Biomonitors of Pharmaceutical Pollution in Georgia; M. Black; University of
Georgia.

(2) The effect of salt marsh hydrodynamics on estuarine flow; Improvement and Uncertainty Assessment; K.
Haas and D. Webster; Georgia Institute of Technology.

(3) Implications of eutrophication and climate change in promoting toxic cyanobacterial blooms in
agricultural ponds across Georgia; S. Wilde and D. Mishra; University of Georgia.

(4) Baseline Conservation Analysis for Agricultural Irrigation in Priority Watersheds of the Lower Flint River
Basin; M. Masters; Albany State University.

However, projects (1) and (4) were granted no-cost extensions into Fiscal Year 2015. As such, their associated
projects reports are formally considered to be a part of the next fiscal year and will be contained in the
FY2015 Annual Report.

Research Program Introduction
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Tracking the impact of on-site wastewater treatment
systems on stream water quality in the Metro-Atlanta area

Basic Information

Title: Tracking the impact of on-site wastewater treatment systems on stream water qualityin the Metro-Atlanta area
Project Number: 2013GA330B

Start Date: 3/1/2013
End Date: 9/30/2014

Funding Source: 104B
Congressional

District: GA-10

Research Category:Water Quality
Focus Category:Wastewater, Water Quality, Treatment

Descriptors: None
Principal

Investigators:Mussie Ykeallo Habteselassie, David Radcliffe

Publications

There are no publications.
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Summary 

Onsite wastewater treatment systems (OWTS), also known as septic systems, are widely used 

throughout the southeast. In Metropolitan Atlanta, it is estimated that 26% of all residential units 

are served by OWTS. As widely as OWTS are used, their impact on water quality remains 

enigmatic. Although a great deal is known about the impact of individual septic units, there is 

still little information on the combined effect of these systems on water quality at the watershed 

level. Both failing and properly functioning septic systems have the potential to contribute to 

surface water pollution under the right conditions. In this study, we tracked the influence of 

OWTS on water quality at the watershed level using pollution monitoring strategies and 

microbial source tracking techniques. Twenty four watersheds of varying septic system density 

were monitored for fecal indicator bacteria and host-specific Bacteroidales over 8 sampling 

seasons. The watersheds were classified into two groups; high density watersheds (HD) were 

those watersheds with greater than 77 septic systems per km2 whilst low density watersheds (LD) 

were the watersheds with less than 38 septic systems per km2. OWTS density ranged from 8 to 

373 units km-2.  

Our results point to ongoing fecal pollution of streams of urbanizing watersheds in the metro-

Atlanta area. These pollution issues vary in temporal and spatial scales and can be attributed to 

watershed level factors including the density of septic systems in the watersheds. This is 

evidenced by the higher levels of the human marker in HD watersheds and the positive 

correlation between OWTS density and human marker yield. There appears to be a strong 

seasonal influence on OWTS density – water quality interaction, with spring showing the 

strongest OWTS impact. The outcome of this study provides the tools that can be used at the 

watershed level to isolate the influence of OWTS on water quality. Evidently the combination of 

baseflow sampling, pollution monitoring and microbial source tracking is a promising approach 

for identifying the contributions of septic systems as well as other non-point sources of fecal 

pollution at the watershed level.  
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Introduction 

Onsite wastewater treatment systems (OWTS), also known as septic systems, are widely used 

throughout the southeast. It is estimated that more than 30% of homes in Georgia are on OWTS 

(U.S. EPA, 2002), which is higher than the national average (25%). A 2005 estimate puts the 

number of OWTS in Metropolitan Atlanta at 526,000 (Metropolitan North Georgia Water 

Planning District, 2006). These systems are not evenly distributed. The percentage of housing 

units on OWTS in counties in and around the Metropolitan Atlanta ranges from 6% (Clayton 

County) to 100% (Paulding County). In the coastal region, the use may be as high as 90% (P. 

Flournoy, research supervisor, UGA Marine Extension Service, personal correspondence). One 

can only expect the number of OWTS to grow as population growth continues in the region. 

 

The issue of OWTS’s impact on water quality remains enigmatic, with anecdotal evidence 

suggesting that these systems can contribute to fecal pollution of surface waters. Although a 

great deal is known about the impact of individual septic units, there is still little information on 

the combined effect of these systems on water quality at the watershed level. It has long been 

known that improperly functioning or poorly maintained systems are sources of pollution. 

However, recent work (Habteselassie et al., 2011; Arnade, 1999) has indicated that properly 

maintained and functioning OWTS can make significant contributions of contaminants to surface 

waters, especially after high precipitation events. The principal contaminants are microbial 

pathogens and nutrients.  

 

Recently, widespread fecal pollution incidents have put the spotlight on OWTS and non-point 

sources of fecal pollution in general. This is in the light of stringent controls over point sources 

in the last three decades. In Georgia, over 600 stream segments are listed as impaired by fecal 

pollutants (fecal coliforms) and not surprisingly OWTS are cited as potential sources of the fecal 

coliforms (GDNR, 2011). A study by Fong et al. (2005) in the lower Altamaha River basin of 

Georgia found that human viruses were prevalent in the Altamaha Sound and other sampling 

sites in areas that support shellfish harvesting activities. Human enteroviruses or adenoviruses 

were found in 67% of the surface water samples. The Altamaha River basin has been a subject of 
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several studies because of water quality impairment along its tributaries. OWTS were identified 

as one of the non-point sources of fecal contaminants (GDNR, 2002). Similar studies in the 

Florida Keys and coastal regions have demonstrated a high risk of fecal pollution of surface 

water resources close to areas of high septic density compared to areas of low septic density.  

 

Identifying the sources of fecal pollution at the watershed level is an important element in 

current water quality management strategies such as the total maximum daily load (TMDL) 

(Ahmed et al., 2012; Habteselassie et al., 2011). Moreover, tracking the sources fecal pollutants 

at the watershed level is a vital component in any management effort to protect public water 

supplies, especially in areas where surface water bodies are the primary source of public water 

supply. In the Metro Atlanta area where surface waters supply more than 98% of public water 

(Landers and Ankcorn, 2008) and fecal pollution continues to present challenges to the water 

supply system, source tracking holds the key to unlock appropriate management strategies 

needed to protect water resources.     

  

As widely as OWTS are used in the Metropolitan Atlanta area for wastewater treatment, 

questions still remain about their aggregate impact on water quality at the watershed level. 

Although the tendency among watershed managers and stakeholders is to blame OWTS for poor 

water quality, the evidence against OWTS is at best circumstantial, prompting this study which 

aims among others to differentiate the sources of fecal pollution in urbanizing watersheds. The 

overall goal of this study is to better define the role of OWTS on water quality in watersheds that 

are found in the metro-Atlanta area. These watersheds are of varying OWTS density from high to 

low density. In this study, microbial source tracking techniques are combined with pollution 

monitoring strategies to investigate the impact of OWTS on water quality in streams in 

watersheds within the water district. Moreover, the seasonality of such impact will be explored to 

determine patterns in OWTS – water quality interactions.  
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Methods 

Site characterization 

The study area is in Gwinnett County, northeast of Atlanta, GA and has a mean annual 

precipitation of about 1245 mm (National Weather Service; 

http://www.nws.noaa.gov/climate/xmacis.php?wfo=ffc). The study area consists of 24 

watersheds which range in size from 0.18 to 8.81 km2. A map of the study area and watershed 

boundaries, modified from Landers and Ankcorn (2008), is presented in Figure 1.  The selected 

watersheds are in the Ocmulgee and Oconee River basins, which drain to the Altamaha River 

and ultimately into the Atlantic Ocean. The selected watersheds are typical of urbanizing 

watersheds along the Interstate 85 corridor in the southeastern Piedmont region of the U.S. This 

region, which has seen rapid population growth over the past two decades, depends largely on 

surface water for more than 65% of public water supply. The watersheds represent a gradient of 

land use conditions from low to high density of septic systems, as well as developed to 

undeveloped uses. Watersheds 1 – 11 and 15 are characterized as having low density of septic 

systems (LD) with the remaining twelve characterized as having high density of septic system 

(HD). An arbitrary threshold of less than 38 septic systems per km2 was set for LD watersheds 

and greater than 77 septic systems per km2 for HD watersheds (Table 1). These threshold values 

make sense when one considers the U.S. EPA’s designation of areas with greater than 15 units 

per km as regions of potential groundwater contamination (U.S. EPA, 1977). Considering the 

improvements in septic system technology and regulation, it was reasonable to raise the 

threshold values in this study.   

 

Watershed characteristics were determined from spatial datasets processed in geographic 

information systems. Watershed characteristics described by Landers and Ankcorn (2008) and 

land uses determined using the StreamStats interactive map of Georgia 

(http://water.usgs.gov/osw/streamstats/georgia.html) are shown in Table 1. The average septic 

density (units km-2), percent impervious coverage and percent agricultural land use are 22, 6.7 

and 32.5 respectively for LD, and 216, 18.3 and 4.2 respectively for HD watersheds. Other 

watershed selection criteria in addition to septic density included similar geological setting, 
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precipitation, climate, accurate base-flow measurement locations and available spatial datasets of 

natural, infrastructure and water-use characteristics. Weather data for the area was collected from 

the Georgia Automated Environmental Monitoring Network (http://www.georgiaweather.net/). 

Additional information on site characteristics can be found in Landers and Ankcorn (2008) 

Sample collection  

Surface water samples from streams in the 24 watersheds were collected during baseflow on 7 

sampling events spanning November, 2011 to November, 2013, creating a data set with two 

spring samples, two summer samples and three winter samples. Baseflow conditions were 

determined using long-term discharge measurements at two USGS stream gages 

(http://waterdata.usgs.gov/ga/nwis/uv/?site_no=02205522; http://waterdata.usgs.gov/ga/nwis/uv 

/?site_no=02207385) near the study site. Also, baseflow sampling coincided with periods of zero 

precipitation 72 hours prior to the sampling event. Baseflow sampling coincided with the spring 

(n = 72; March 2012, April 2013 and March 2014), summer (n = 48; July 2012 and 2013) and 

winter (n = 72; November 2011, 2012 and 2013) seasons.  At each monitoring station, samples 

were collected in duplicate in 1 liter sterile high-density polypropylene, screw-capped bottles.  

Samples were kept on ice and transported to the laboratory for analysis (usually within 6 hours of 

sample collection). Sample collection and analysis followed guidelines of the National Field 

Manual for the Collection of Water-Quality Data (USGS, variously dated). Baseflow discharge 

(m3 sec-1) was measured at each monitoring point during sampling events by our project partners 

at the United States Geological Survey (USGS) Georgia Water Science Center in Atlanta. The 

velocity-area method (Rantz, 1982) was used for discharge measurements.  

Fecal indicator bacteria analysis 

Water samples were analyzed for the FIB E. coli and enterococci using the Colilert-18 and 

Enterolert kits (IDEXX Laboratories Inc., Westbrook, ME). The Colilert-18 and Enterolert kits 

are defined substrate methods for E. coli and enterococci respectively and are U.S. 

Environmental Protection Agency (U.S. EPA) approved and are included in Standard Methods 

for Examination of Water and Wastewater. Each sample was diluted (10–fold dilution based on 

previous analysis of samples from the monitored streams) to 100 ml volume using sterile 

deionized water. The Colilert-18 and Enterolert substrates were then added to the 100 ml dilution 

to dissolve. The samples were then poured into a 97 well tray, sealed and incubated for 18 hours 
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and 24 hours for E. coli and enterococci respectively. The number of positive wells, based on 

UV fluorescence, was used to estimate the MPN of E. coli and enterococci using manufacturer 

supplied MPN tables. All samples were run with negative controls (100 ml of diluent used to 

dilute samples) and followed manufacturer recommended quality control procedures.  

Nucleic acid extraction  

Nucleic acid (DNA) were extracted from water samples for quantitative polymerase chain 

reaction (qPCR) by first filtering 100 ml of water samples through 47 mm diameter 0.40 μm pore 

size polycarbonate filters (GE Whatman, Pittsburgh, PA). This serves to concentrate bacterial 

DNA for downstream qPCR applications. Following sample filtration, the filters were placed in 

microcentrifuge tubes and stored at -20oC prior to DNA extraction. The filters were later 

processed for bacterial DNA using the PowerFecal DNA Isolation Kit (MoBio Laboratories, 

Inc., Carlsbad, CA) according to the manufacturer’s instructions. At the end of the extraction 

protocol, bacterial DNA was eluted to a final volume of 50 ul and stored at -20oC for 

downstream molecular applications. 

Microbial source tracking 

The sources of fecal pollutants impacting streams in the monitored watersheds were investigated 

using microbial source tracking techniques. In this process, quantitative polymerase chain 

reaction (qPCR) was used to identify and quantify the contributions of different sources of fecal 

pollutants to the streams. Human and ruminant sources of fecal pollution were the focus of 

attention as our research and site survey indicated that these were the most likely contributors to 

total fecal pollution in streams. For tracking human sources of fecal pollution, the BacHum 

marker (Kildare et al., 2007) was used whilst the BacR marker (Reischer et al., 2006) was used 

to track ruminant sources in the waterrsheds. These genetic markers were developed in previous 

studies from 16S rRNA genes of host specific bacteria of the order Bacteroidales. Moreover, a 

generic Bacteroidales marker (AllBac) devoped by Layton et al. (2006) was used to quantify 

total fecal pollution in the watersheds. To achieve quantitation by qPCR, a standard curve was 

generated by first amplifying the AllBac, BacR and BacH targets in bacterial DNA samples 

using conventional PCR. The conventional PCR assay (Bio-Rad MyCycler Thermal Cycler, 

Hercules, CA) was run at a final volume of 25 ul with a reaction mixture containing 2x GoTaq 

Colorless Master Mix, 0.2 uM of forward and reverse primers and 2 ul of sample DNA. The PCR 
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products were cloned into pGEM-T Easy Vectors (Promega, Madison, WI) and transformed into 

competent E. coli cells (JM109 High Efficiency Competent Cells, Promega). Extracted plasmid 

DNA (PureYield Plasmid Midiprep System, Promega) was quantified and serially diluted 10-

fold to generate reaction standards.  

 

The standards were amplified during each qPCR assay to generate a standard curve used to 

estimate the copies of target gene markers in water samples. The copies of genetic marker in 

samples were estimated using the formula below 

 

where (Cn) is the amount of PCR products from input target molecules (C0) after (n) cycles and 

(E) is the amplification efficiency. 

Standard curves, which were calculated as simple linear regressions, were used to calculate 

amplification efficiencies (which ranged from 90 to 100% in this study) at each instrument run. 

Amplification efficiencies were calculated according to the formula 

  

In theory 100% efficiency implies that the amount of PCR product doubles with each cycle and 

(s) is the slope of the standard curve 

 

 

The StepOnePlus Real-Time PCR System (Life Technologies, Grand Island, NY) was used for 

all reactions. Each qPCR reaction was made up 20 ul reaction volume with 2x SYBR Select 

Master Mix (Lifetechnologies), optimized concentration of 150 nM for both forward and reverse 

primers, with 2 ul of sample DNA. A meltcurve was generated with each instrument run to 

confirm the specificity of amplified PCR products. Reaction conditions for both conventional 

and qPCR assays are provided in Table 2.  

 Data analysis  

FIB levels in streams were expressed as stream yield (MPN sec-1 km -2) by multiplying FIB 

count (MPN 100 ml-1) by the stream discharge (m3 sec-1) to obtain the stream load. The load was 

then divided by the watershed area to give the stream yield. Similarly, Bacteroidales marker 

copies were expressed as stream yield (Copies sec-1 km -2). Both bacterial count and stream yield 
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were reviewed for normality and log-transformed to achieve normality prior to data analysis. The 

relative abundance of human and ruminant genetic markers as a fraction of total fecal pollution 

(generic marker) was estimated. However, caution should be exercised in the interpretation of 

the relative amounts as concerns over differential persistence, abundance, mobility of markers 

and most importantly variations in the distribution of gene copies of target markers among 

individuals affects the prediction of relative amounts of fecal host pollution (Wuertz et al., 2011). 

One-way analysis of variance (ANOVA) was used to test differences in bacterial counts and 

yield between high and low density watershed groups. All data analysis was performed in SAS 

9.3 (SAS Institute, Cary, NC) and statistical significance estimated at the 95% confidence level. 

 

Results and discussion 

Indicator bacteria quantification 

Microbial water quality was assessed by enumerating E. coli and enterococci levels in stream 

water samples. Table 3 and Figures 2 and 3 summarize E. coli and enterococci counts and stream 

yields across watershed groups and over seasons. The ranges of FIB counts were consistently 

wider in LD watersheds than HD watersheds. The data also suggests widespread fecal pollution 

across both LD and HD watersheds (Figure 2). In LD watersheds, approximately 49% of all 

samples exceeded the one-time single sample E. coli action value for recreational water use of 

235 MPN 100 ml-1. The percentage of samples that exceeded the E. coli threshold in HD 

watersheds was 45% (Figure 2a). Enterococci counts exceeded the single sample action value of 

70 MPN 100 ml-1 in 90% and 92% of all samples collected in LD and HD watersheds, 

respectively (Figure 2b). The recommended action values are provided in the revised recreational 

water quality criteria (U.S. EPA, 2012). According to the EPA, an action value is the single-

sample “do not exceed” value for recreational water use. 

Identification and quantification of host-specific markers 

General and host-specific Bacteroidales markers in water samples were quantified with qPCR to 

identify the sources of fecal pollutions in the watersheds. The dynamic range of quantification 

for the general Bacteroidales marker was six orders of magnitude; from 15 to 15 x 105 copies per 

µl of template DNA. The linear range for the BacHum and BacR markers was also six orders of 
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magnitude between 2 to 15 x 104 copies per µl. Figures 4, 5 and 6 chart the variations in general 

and host-specific marker copies according to OWTS density and seasons. In terms of generic 

marker density, low density OWTS impacted areas showed higher marker copy numbers 

compared to high density areas (Figure 4a). A similar scenario was observed for fecal indicator 

bacteria counts (Figure 2) which confirms that low density areas present higher risk of fecal 

pollution in comparison to areas of high OWTS density. Low density areas, with greater 

agricultural activities and larger areas of forest and hence wildlife, are likely impacted by several 

fecal pollution sources, which shows in the wide variations in both general Bacteroidales copies 

numbers and indicator bacteria counts.  

 

A look at marker density for ruminants (Figure 5a) highlights the variations in fecal pollution 

attributable to ruminant sources, particularly in LD watersheds. Ruminant marker density in HD 

watersheds on the other hand changed very little over time and by season (Figure 5a & b). The 

low level of agricultural activities and reduced influence of wildlife resulting from limited forest 

cover can explain the consistent ruminant marker density observed in HD watersheds.  

 

The stream yield of general Bacteroidales in contrast indicates that both watershed groups do 

contribute similar levels of fecal pollutants to streams in the study watersheds (Figure 4c). This 

can be attributed to the contribution of OWTS to streamflow which has the effect of increasing 

fecal pollutants passing through the stream channel in the HD watersheds. Ruminant marker 

yield was, as expected, higher in LD watersheds than HD watersheds. A significant increase (p = 

0.04) in human marker yield was observed in HD watersheds over LD watersheds for spring 

2012 (Figure 6). The data for winter 2012 and spring 2014 did not show a significant difference 

between HD and LD watersheds. We did not report data for the rest of the sampling dates 

because only a few sites in each watershed group were positive for the human marker. 

Additionally, a frequency occurrence of 43% was calculated for the human marker in HD 

watersheds compared to 37% in LD watersheds. This once again confirms our suspicions that in 

HD watersheds inputs from septic systems may be contributing to fecal pollution of surface 

waters since our research indicates that there are no wastewater discharge permits (NPDES) in 

the study watersheds (Georgia GIS Clearing House, https://data.georgiaspatial. org/index.asp). 

Data from the study indicates a positive correlation between OWTS density and human specific 
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marker yield. This relationship was strongest in spring of 2012 with a correlation coefficient R = 

0.67 (Figure 7a). Samples from winter 2012 (Figure 7b) and spring 2014 (data not shown) were 

also positively correlated with OWTS density, albeit with low R values. 

 

Conclusion 

The results of this study points to ongoing fecal pollution issues in streams of urbanizing 

watersheds in the metro-Atlanta area. These pollution issues vary in temporal and spatial scales 

and can be attributed to several factors including the density of septic systems in the watersheds. 

This is evidenced by the higher levels of the human marker in HD watersheds and the positive 

correlation between OWTS density and human marker yield. There appears to be a strong 

seasonal influence on OWTS density – water quality interaction, with spring showing the 

strongest OWTS impact.  

 

References 

Ahmed, W., Sidhu, J. P. S., and Toze, S. (2012) Evaluation of the nifH Gene Marker of 

Methanobrevibacter smithii for the Detection of Sewage Pollution in Environmental 

Waters in Southeast Queensland, Australia. Environ Sci Technol 46, 543-550. 

Arnade, L. J. (1999) Seasonal Correlation of Well Contamination and Septic Tank Distance. 

Ground Water 37, 920-923. 

Fong, T.-T., Griffin, D. W., and Lipp, E. K. (2005) Molecular assays for targeting human and 

bovine enteric viruses in coastal waters and their application for library-independent 

source tracking. Appl Environ Microbiol, 2070.  

GDNR (Georgia Department of Natural Resources). 2011. Draft total maximum daily load 

evaluation for two segments of Lake Allatoona in the Coosa River Basin. Available 

online at http://www.gaepd.org/Documents/TMDL_page.html. 

 

GDNR (Georgia Department of Natural Resources). 2002. Total maximum daily loads (TMDLs) 

for fecal coliform in 303(d) listed streams in the Altamaha River Basin. U.S. 

Environmental Protection Agency, Region 4. Georgia Department of Naural Resources, 

Atlanta, GA. 



12 
 

Habteselassie, M. Y., Kirs, M., Conn, K. E., Blackwood, A. D., Kelly, G., and Noble, R. T. 

(2011) Tracking microbial transport through four onsite wastewater treatment systems to 

receiving waters in eastern North Carolina. J Appl Microbiol 111, 835-847. 

Kildare, B. J., Leutenegger, C. M., McSwain, B. S., Bambic, D. G., Rajal, V. B., and Wuertz, S. 

(2007) 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and 

dog-specific fecal< i> Bacteroidales</i>: A Bayesian approach. Water Res 41, 3701-

3715. 

Landers, M. N., and Ankcorn, P. D. (2008). "Methods to Evaluate Influence of Onsite Septic 

Wastewater-Treatment Systems on Base Flow in Selected Watersheds in Gwinnett 

County, Georgia, October 2007." U. S. Geological Survey. 

Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., and Sayler, G. (2006) 

Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for 

estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 

72, 4214-4224.  

Metropolitan North Georgia Water Planning District, 2006. Septic Systems status and issues 

working paper: Atlanta, Georgia, 37p., accessed September 25, 2014 at 

http://documents.northgeorgiawater.org/District_Septic_Report_Mar2006.pdf.  

Rantz, S.E., 1982, Measurement and computation of stream-flow—Volume 1, Measurement of 

stage and discharge: U.S. Geological Survey Water-Supply Paper 2175, 284 p.,also 

available online at http://pubs.usgs.gov/wsp/wsp2175/. 

Reischer, G. H., Kasper, D. C., Steinborn, R., Mach, R. L., and Farnleitner, A. H. (2006) 

Quantitative PCR method for sensitive detection of ruminant fecal pollution in freshwater 

and evaluation of this method in alpine karstic regions. Appl Environ Microbiol 72, 5610-

5614.  

US Environmental Protection Agency (2012) Recreational Water Quality Criteria, accessed 

September 19, 2014 at http://water.epa.gov/scitech/swguidance/standards/criteria 

/health/recreation/upload/RWQC2012.pdf.  

U.S. Geological Survey (variously dated) National field manual for the collection of water-

quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, 

book 9, chaps. A1-A9,accessed August 30, 2014 at http://pubs.water.usgs.gov/twri9A.  



13 
 

U.S. Environmental Protection Agency (2002) Onsite waste-water-treatment systems manual: 

National Risk Management Research Laboratory Report EPA/625/R-00/008.  

U.S. Environmental Protection Agency (1977) The Report to Congress - Waste Disposal 

Practices and Their Effects on Groundwater. U.S. Environmental Protection Agency, 

Washington, D.C.. 

Wuertz, S., Wang, D., Reischer, G. H., and Farnleitner, A. H. (2011) Library-Independent 

Bacterial Source Tracking Methods. Microbial Source Tracking: Methods, Applications, 

and Case Studies, 61-112. 



14 
 

Tables and Figures 

Table 1. Septic system properties and land use characteristics in the study area 

 

Watershed 
ID 

Low density 
(LD) or high 

density (HD) of 
septic systems 

Basin area 
(km2) 

Septic density 
(units/km2) 

Median 
distance of 

septic to 
stream (m) 

% Forest 
cover 

% Agriculture 
land use 

% Developed 
area 

% Impervious 
area 

%  
Slope 

1 LD 8.39 8 163 51.0 27.7 9.4 4.2 8.8 

2 LD 1.55 10 126 44.5 25.8 13.8 3.3 10.6 

3 LD 2.67 14 163 48.8 32.9 10.2 4.3 8.5 

4 LD 0.62 36 172 46.4 23.9 22.0 11.6 7.3 

5 LD 1.48 20 86 32.6 45.5 17.8 5.4 5.8 

6 LD 5.28 15 108 30.2 49.2 14.4 4.1 6.5 

7 LD 1.11 18 90 43.7 29.4 18.5 6.3 10.6 

8 LD 1.27 17 94 34.2 48.9 14.3 3 9.2 

9 LD 2.95 27 159 26.4 42.6 23.4 7.8 7.7 

10 LD 4.4 34 119 43.1 17.2 36.1 7.3 8.3 

11 LD 4.2 25 119 31.8 36.3 25.6 7.6 7.8 

15 LD 1.68 37 140 14.7 10.3 70.6 15.2 4.6 

12 HD 3.29 115 105 44.1 10.6 41.8 12.3 9.1 

13 HD 8.81 88 117 33.8 6.6 54.5 13.2 8 

14 HD 1.74 141 104 26.0 6.1 60.7 16.1 8.5 

16 HD 2.59 187 99 19.6 0.1 77.6 26.4 5.7 

17 HD 1.68 230 138 21.0 12.0 66.8 20.1 7.5 

18 HD 0.98 308 151 31.3 1.5 66.6 18.4 7.4 

19 HD 0.18 373 105 11.4 0.0 88.2 20.3 7.8 

20 HD 0.54 290 83 24.8 0.0 75.5 18.3 6 

21 HD 1.14 214 63 22.2 5.0 70.7 17.5 8.6 

22 HD 1.94 157 63 21.7 4.5 71.7 18.9 7 

23 HD 0.52 233 65 22.9 3.1 73.9 18.4 7.3 

24 HD 0.67 253 55 19.4 1.6 77.7 20 7.6 

Mean LD   2.97 22 128 37.3 32.5 23.0 6.7 8 

   Mean HD   2.01 216 96 24.8 4.2 68.8 18.3 7.5 
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Table 2. General and host-specific Bacteroidales marker conditions for qPCR reactions 
 

Host  Marker 
name 

Primers Sequences (5' - 3')  Reaction condition Source 

General 
Bacteroidales 

AllBac AllBacF GAGAGGAAGGTCCCCCAC 2 min at 50oC, denaturation for 10 min 
at 95oC; cycling: 30 sec at 95oC, 45 
sec at 60oC   

Layton et 
al. (2006) 

  AllBacR CGCTACTTGGCTGGTTCAG 

Human  
specific 

BacHum BacHum 160F TGAGTTCACATGTCCGCATGA 2 min at 50oC, denaturation for 10 min 
at 95oC; cycling: 15 sec at 95oC, 1 
min at 60oC   

Kildare et 
al. (2007) 

  BacHum 241R CGTTACCCCGCCTACTATCTAATG 

Ruminant  
specific 

BacR BacR_f GCGTATCCAACCTTCCCG 2 min at 50oC, denaturation for 10 min 
at 95oC; cycling: 15 sec at 95oC, 1 
min at 60oC   

Reischer et 
al. (2006) 

  BacR_r CATCCCCATCCGTTACCG 
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Table 3. Mean and ranges of microbial water quality parameters (Data summarized by season and watershed group; LD or HD = 
watersheds with low or high density of septic systems, respectively) 

 

 
 

 
Parameter 

Spring  Summer 

LD watersheds HD watersheds  LD watersheds HD watersheds 

Mean Low  High Mean Low  High  Mean Low  High Mean Low  High 

E. coli count 
(MPN 100 ml-1) 

485 41 2,739 413 10 1,643  533 28 1,970 313 68 985 

E. coli yield  
(MPN sec-1 km-2) 

35,937 2,456 255,944 33,900 542 164,293  22,563 1,066 83,628 24,382 892 100,495 

Enterococci count 
(MPN 100 ml-1) 

285 56 1399 759 54 5,635  2,238 259 11401 879 92 5963 

Enterococci yield 
(MPN sec-1 km-2) 

22,720 3,294 130,682 58,919 3,961 305,189  127,832 4,539 538,160 72,146 2,199 524,120 

               
 
 

 
Parameter 

Winter  Pooled dataset 
LD watersheds HD watersheds  LD watersheds HD watersheds 

Mean Low  High Mean Low  High  Mean Low  High Mean Low  High 

E. coli count 
(MPN 100 ml-1) 

261 15 1,181 238 10 1,358  404 15 2,739 309 10 1,643 

E. coli yield  
(MPN sec-1 km-2) 

7,383 75 55,017 5,719 125 28,595  20,029 75 255,944 19,103 125 164,293 

Enterococci count 
(MPN 100 ml-1) 

251 20 1,173 301 31 1,351  829 20 11,401 597 31 5,963 

Enterococci yield 
(MPN sec-1 km-2) 

6,210 234 29,484 6,432 565 41,515  45,677 234 538,160 40,204 565 524,120 
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Figure 1. Location of the study site with boundaries for watersheds with low (LD) or high (HD) 

density of septic systems and monitoring stations in Gwinnett County, GA 
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Figure 2. E. coli (a) and enterococci (b) counts in streams of watersheds with low (LD) or high (HD) density of septic systems over 

the sampling period. Broken line represents the single sample threshold value for E. coli and enterococci for recreational use. Mean 

bacterial count for each sampling event is represented by (ӿ) on each boxplot.  
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Figure 3. E. coli and enterococci stream yield grouped by sampling period and season in 

watersheds with high density or low density of septic systems; significant differences between 

high density and low density watersheds within season are represented by letter designations. 

Bars without letter designations are not statistically different between high and low density 

watersheds within season.  
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Figure 4. General Bacteroidales density (a and b) and stream yield (c and d) in high density 

(HD) and low density (LD) watersheds 
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Figure 5. Ruminant marker density (a and b) and stream yield (c and d) in HD and LD 

watersheds according to sampling period and season 
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Figure 6. Comparison of human specific marker yield according to OWTS density over three 

sampling periods. Bars with letter designations are significantly different for HD and LD 

watersheds.  
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Figure 7. Relationship between OWTS density and human specific marker for samples collected 

in spring 2012 (a) and winter 2012 (b) 
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Executive Summary 

This	study	demonstrates	that	(i)	skillful,	multi‐lead	flow	forecasts	can	be	generated	for	all	
ACF	sub‐basins	throughout	the	year	based	on	preceding	unimpaired	inflow	and	soil	
moisture	predictor	variables,	and	(ii)	the	use	of	forecast	information	in	reservoir	
operations	would	accrue	benefits	to	a	variety	of	water	uses	including	navigation,	
environmental	flow	support,	hydropower	generation,	water	use	management,	and	
recreation.		

While	forecast	value	was	demonstrated	in	relation	to	droughts,	reliable	forecasts	are	also	
possible	and	useful	for	non‐drought	periods.	Overall,	the	study	finds	that	proactive,	
forecast‐based	operations	can	improve	the	management	of	ACF	by	anticipating	future	
hydrologic	conditions	and	water	stresses,	and	leveraging	management	opportunities	
months	in	advance.			
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1. Introduction	

From a water resources management standpoint, the most critical attributes of meteorological 
variables (e.g., rainfall, evapotranspiration, etc.) are their marked uncertainty and variability 
across a wide range of temporal scales, from minutes to decades.  As a consequence, hydrologic 
variables including streamflow, soil moisture, and aquifer recharge are also markedly uncertain 
and variable, occasionally bringing about extreme events far above or below average conditions. 
Floods and droughts are such extreme events of keen water management concern and interest.    
This investigation focuses on seasonal droughts, but the results also apply to wet climatic 
periods.  
 
The work presented in this report investigates (i) the feasibility and accuracy of multi-lead 
drought forecasts, and (ii) the value of using drought forecasts in reservoir and water resources 
management in the Apalachicola-Chattahoochee-Flint (ACF) river basin.   
 
Section 2.1 of the report presents the motivation for this investigation.  Section 2.2 first discusses 
general quantities that may serve as potential drought indicators, and subsequently describes a 
list of specific indicators for the ACF river basin. Section 2.3 outlines the technical process of 
generating, validating, and assessing flow forecasts.  Section 2.4 provides four examples of 
seasonal flow forecasts, two of which pertain to the Lake Lanier watershed and two to the ACF 
watershed upstream of the Chattahoochee gage on the Apalachicola River.  Section 2.5 explains 
how forecasts can be incorporated in the management process, especially the operation of 
reservoirs, and outlines the decision framework best suited to utilize forecasts.  Section 2.6 
presents a case study demonstrating that the use of flow forecasts in the operation of the ACF 
reservoirs can indeed improve basinwide management and performance.  While this 
demonstration focuses on objectives related to environmental and navigation flows, it may be 
modified to benefit other water uses as well.  The report concludes with Chapter 3 which 
summarizes the overall findings and conclusions of the investigation.                              
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2.	 Drought	Prediction	and	Management	

2.1		 Drought	Management	Purpose	

A key component of a sustainable water management plan is a set of provisions for managing the 
system during droughts. Indeed, the ACF baseline operations currently used to operate the 
reservoir in the ACF basin (see Appendix A and B for further detail) include adjustments to 
some water uses during dry hydrologic conditions. Specifically, the hydropower generation 
hours are decreased as reservoir storage falls below certain thresholds. Additionally, the 
environmental flow requirements downstream of J. Woodruff become less stringent when the 
system composite storage and basin inflows decrease.  

Both of these adjustments are largely reactive. Specifically, water management actions, such as 
changes in water use and flow targets, come into effect only after drought conditions have 
clearly impacted the basin. The purpose of the investigation described in this section is to explore 
the value and operational feasibility of proactive drought management rules, i.e., rules that use 
forecasts of future hydrologic conditions to adjust reservoir operations and water use levels in 
anticipation of these conditions. In particular, we focus on two questions: (a) Can drought and 
non-drought periods be reliably forecasted, and (b) can operations be adjusted to take advantage 
of these forecasts? With respect to the first question, a variety of different indicators are 
evaluated to determine their ability to forecast future hydrologic conditions. Particular attention 
is paid to how reliable these indicators are, and how far into the future hydrologic conditions can 
be forecasted. The second question involves using the forecasts to adjust reservoir operations and 
water use target levels to mitigate impacts that would have occurred in the absence of proactive 
drought management measures.  

Forecast-based operation is not just important for mitigating impacts during droughts. Forecasts 
can also be used to anticipate wet conditions, during which reservoir operations can be adjusted 
to increase water uses and augment stakeholder benefits.  

This investigation is not intended to develop the best possible drought management assessment, 
prediction, and management procedures, but rather to demonstrate the feasibility and value of 
developing and operationalizing such procedures (proof of concept).     

2.2	 Drought	Indicators	

Indicators are variables that serve to detect the arrival (or predict the onset) of different 
hydrological conditions. General indicator categories include, among others: 
 
 Unimpaired flow (UIFs); 
 Precipitation; 
 Soil moisture storage; 
 Reservoir storage; 
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 Groundwater storage; 
 Salinity; 
 Other indices.   

 
For this study, the following specific indicators are considered: 
 
 Local/Cumulative UIFs; 
 Mean Areal Precipitation (MAP); 
 Standard Precipitation Index (SPI); 
 Palmer Drought Severity Index; 
 Palmer Modified Drought Index; 
 Palmer Z-Index; 
 Palmer Hydrologic Drought Severity Index; 
 Total Soil Moisture Storage computed by the GWRI Watershed Model; 
 Lower Soil Moisture Storage computed by the GWRI Watershed Model; 

 
Each of these indicators are computed for 10 different ACF sub-basins (Figure 2-1): 

(i) Buford; 
(ii) West Point; 
(iii) W.F. George; 
(iv) Montezuma; 
(v) Albany; 
(vi) Bainbridge; 
(vii) Buford +West Point; 
(viii) Buford +West Point + W.F. George; 
(ix) Entire Flint + the sub-basin from W.F. George to J. Woodruff; 
(x) ACF basin upstream of the Chattahoochee gage.  

The unimpaired flow dataset has been developed by the U.S. Army Corps of Engineers [USACE, 
1997 & 2004], Mean aerial precipitation is computed from the gridded CRU dataset [Harris et 
al., 2013], while the SPI and the various Palmer indices were derived from the National Climate 
Division Dataset developed by NOAA. Additionally, soil moisture storage variables are obtained 
from the GWRI rainfall-runoff model calibrated for each sub-basin. 
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Figure 2-1: ACF Sub-basins and Drought Index Locations  

 

Hydrologic models generate streamflows from meteorological inputs, such as precipitation and 
potential evapotranspiration, by simulating the flow of water through the surface and sub-surface 
systems (Figure 2-2).  The GWRI rainfall-runoff model uses two storage components (zones) to 
simulate the subsurface processes.  The upper soil moisture zone controls interflow which 
represents the fast responding streamflow contribution.  The lower soil moisture zone controls 
the slow responding baseflow which sustains streamflow during long dry periods.  The model 
total soil moisture storage, and the storage of the lower zone are used as indicator variables.  

For each dataset, historical measurements from 1939-2008 are used to develop and validate the 
drought assessment and forecasting schemes.  
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Figure 2-2: GWRI Rainfall-Runoff Model 

 

2.3	 Drought	Forecasting	Goal,	Model	Development	and	Validation	Process	

The goal of the drought forecasting approach is to predict the cumulative unimpaired flow 
volume expected to materialize out of a particular ACF sub-basin over a certain calendar period.       

Considering that 9 indicator variables are computed for each of 10 ACF sub-basins, a total of 90 
different indicators are generated and assessed.  These indicators are used as predictor variables 
to develop models that forecast the unimpaired flow of each sub-basin.   

The forecasting model development and validation process is outlined below: 

1. Specify forecast model attributes:  Select the time of the year when the forecast will be 
issued, the length of the forecasting horizon, and the predictor variables (i.e., the 
indicators to be used) to develop the forecasting model. 
 

2. Calibrate the forecasting model: Use portion of the historically observed data to develop 
models that relate the predictor variables to the unimpaired flows. 
 

3. Assess model validity and accuracy: Use a different (non-overlapping) data portion than 
the data portion used in Step 2 to assess the validity and accuracy of each forecasting 
model configuration.  
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The previous process is repeated for each of the 10 ACF sub-basins, forecast issue date, forecast 
horizon length, and combination of indicators to identify the best forecasting model for each sub-
basin and time of the year.  
 
Developing and evaluating drought forecasting models is a highly tedious process, requiring 
assessment of numerous predictor variable combinations for each sub-basin and time of the year.  
To facilitate these computations, GWRI has developed tools that automate this process and can 
quickly assess the forecasting value of various alternative model configurations.     

2.4	 Forecasting	Model	Examples	

Forecasting models were developed for all 10 sub-basins and various calendar periods.  This 
section discusses four model examples, two of which pertain to the Lake Lanier sub-basin and 
two to the ACF sub-basin upstream of the Chattahoochee gage on the Apalachicola River.   

2.4.1	 Forecasting	Models	for	Lake	Lanier	

Figure 2-3 presents assessment results for two forecasting models developed for the Lake Lanier 
watershed.   

The first forecasting model is developed to generate forecasts on April 1 of each year for the 
cumulative unimpaired flow of the following two months (April 1 to May 31).  The second 
model is developed to issue forecasts on the same calendar date as the first (April 1) but aims to 
predict the cumulative unimpaired flow of the following four months (April 1 to July 31).  

After evaluating various predictor variable combinations, the best performing models are 
identified to be those using the UIFs and the soil moisture storages of the previous two months 
(March and February) as predictor variables. Namely, both models use four predictor variables 
[i.e., UIFLanier (March), UIFLanier (February), SMLanier (March), SMLanier (February)] to predict the 
UIF volume for the upcoming two and four months respectively.  (The PDSI index for March 
and February is also found to perform well in the second model.) The mathematical relationship 
between predictor and predicted variables is derived through regression analysis.   

Forecast evaluation is carried out through retrospective assessments in which the models are 
used on April 1 of each historical year to predict the forthcoming UIF volume.  The forecasts 
issued for all historical years are then evaluated against the UIF volumes actually observed. 
Figure 2-3 presents the forecasted and observed quantities for 1939 to 2008 and shows that UIF 
forecasts exhibit good skill in both cases.  This is confirmed by the correlation coefficient 
between observed and forecasted UIF volumes which is estimated to be 0.76 and 0.74 
respectively for the first and second forecasting model. 
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Additional forecasting models were developed for Lake Lanier for other calendar dates and lead 
times.  While each model uses different predictor variables, forecast assessments show that UIF 
forecast skill is overall good from January to April and from April to October.                   

2.4.2	 Forecasting	Models	for	the	Chattahoochee	Gage	(Apalachicola)	

Figure 2-4 presents assessment results for two forecasting models developed for the ACF sub-
basin upstream of the Chattahoochee gage on the Apalachicola River.    

The first forecasting model is developed to generate forecasts on May 1 of each year for the 
cumulative unimpaired flow of the following six months (May 1 to October 31).  The second 
model is developed to issue forecasts on August 1 of each year for the following three months 
(August 1 to October 31).  

For May 1 forecasts, the best performing model uses the UIF and soil moisture values of the 
previous two months (April and March) as predictor variables: UIFChatt (April), UIFChatt (March), 
SMACF-Chatt (April), and SMACF-Chatt (March).  As noted earlier, the soil moisture index is the 
storage of the lower soil moisture zone of the GWRI rainfall-runoff model calibrated for the 
ACF sub-basin upstream of the Chattahoochee gage.   

For August 1 forecasts, the best performing model uses the UIF and soil moisture values of the 
previous two months (July and June) as predictor variables: UIFChatt (July), UIFChatt (June), 
SMACF-Chatt (July), and SMACF-Chatt (June).  Comparable forecast performance is also obtained by 
using the PDSI index for July and June instead of soil moisture.         

Figure 2-4 presents the forecasted and observed quantities for 1939 to 2008 and shows that UIF 
forecasts exhibit good skill in both cases.  The correlation coefficient between observed and 
forecasted UIF volumes is estimated to be 0.71 and 0.82 respectively for the first and second 
forecasting model. 

Additional forecasting models developed for the Chattahoochee gage and other calendar dates 
and lead times indicate that forecast skill is good throughout the year.  

Furthermore, models developed for other locations on the Chattahoochee and Flint Rivers 
yielded similar positive results and findings.      
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Figure 2-3: Forecasting Model Examples for the Lake Lanier Watershed 

 

 

Figure 2-4: Forecasting Model Examples for the Chattahoochee Gage (Apalachicola) 
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2.5	 Forecast	Value	in	Reservoir	Operations	and	Water	Resources	
Management	

The forecasting models described in the previous sections were used to answer the question “Can 
operations be adjusted to take advantage of these forecasts?”  The ACF basin, however, has 
multiple purposes, and operations could be adjusted in several alternative ways to benefit 
different stakeholders and water uses. Thus, adjusted operations should therefore include new 
rules that use forecast information, but also rules that reflect the manner in which the basin 
stakeholders envision to share the benefits of forecast-based operations.  However, a 
comprehensive study evaluating the merits and trade-offs of different forecast-based operating 
policies and benefit sharing schemes is beyond the scope of this report.  Instead, the potential 
value of forecast-based operations will be shown through a case study that uses forecasts to vary 
the level of flow support at one location in the basin.  

The case study builds on a water management alternative, denoted as AltPulse, derived from 
baseline operations. The baseline operations are described in detail in Appendix B and represent 
the current operations, physical characteristics, and water use conditions in the ACF basin. The 
AltPulse scenario is identical to the baseline operations, except for the following changes: 

 The logic used to coordinate the major reservoirs has been slightly modified. 
 More flexible hydropower generation rules have been added. 
 Flow pulses out of J. Woodruff consisting of a minimum of 9,000 cfs for at least two 

consecutive weeks in May and July have been added. 

Both the baseline operations and the AltPulse scenarios were assessed via river basin models that 
simulate the behavior of the river and characterize its ability to meet environmental and socio-
economic objectives under different water management alternatives. Daily flow data from the 
historical period from 1939-2008 is used to drive all model simulations and assessments. The 
models then generate time series of results over the same historical period. Model outputs 
include various water related quantities such as reservoir storages and elevations; hydropower 
generation (primary and secondary); consumptive uses by sector; high, normal, and low river 
flows; environmental conditions; and other important variables. Systematic analysis and inter-
comparisons of these results are then used to determine how well stakeholder interests are met by 
particular water management alternatives. Appendix A contains a detailed description of the 
river basin models and data used as part of this study.  

Figure 2-5 compares the simulated ACF composite storage sequences under the baseline (red) 
and AltPulse (dark blue) scenarios. The AltPulse composite storage is often higher than the 
baseline storage (for example during high flow periods) and does not fall significantly lower than 
the baseline storage even during drought times. These results indicate that the AltPulse scenario 
is able to keep more water in the system, although some of the other water uses may be affected, 
as discussed in Georgakakos and Kistenmacher [2015]. The basin stakeholders will ultimately 
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have to decide on whether the AltPulse water management alternative is desirable. Nonetheless, 
the question we consider next is whether this water management alternative can be improved 
upon by forecast-based operations. 

Figure 2-5 also depicts results for two additional water management alternatives. Both 
alternatives are based on the AltPulse scenario, but provide increased flow support downstream 
of J. Woodruff in May and July. Specifically, one alternative (light blue) maintains the same 
pulse magnitude (9,000 cfs) but increases the duration of the pulses from a minimum of two 
weeks in each month to four weeks in each month. The other alternative (gray) increases the 
pulse duration as well as the magnitude by requiring four weeks of 16,000 cfs in each month. 
The figure shows that these management alternatives may result in lower composite storages 
than the baseline and the AltPulse scenarios. This is particularly true during droughts (lower 
right figure excerpt), where the releases needed to provide increased flow support result in large 
decreases in composite storage, especially for the 16,000 cfs pulses. On the other hand, the 
increased flow requirements do not significantly stress the system during wet periods (lower left 
figure excerpt). In most years, composite storage would only be slightly lowered under these 
pulsed scenarios.  And during the wettest years, even the largest flow support requirements (i.e., 
4 weeks of 16,000 cfs in May and July) could be met naturally without having to make any extra 
reservoir releases. 

These results illustrate that increased flow support can be provided comfortably during wet 
periods, while doing so during drier periods may deplete system storage and increase overall 
water stress. Motivated by these observations, the value of forecast-based operations is illustrated 
by deriving new operating policies that adjust the level of flow support based on forecasted 
hydrologic conditions. Specifically, operational policy adjustments are developed in the 
following sequential decision framework. 

Sequential Decision Framework Incorporating Flow Forecasts:  

(i) At a critical decision date (say March 1 or April 1 of each year), the UIF forecasting 
models are used to forecast the hydrologic conditions for the coming months. 

(ii) Based on whether the forecasts anticipate wet, normal, or dry streamflow conditions, the 
operating policy is adjusted to provide different levels of flow support. 

(iii) Next, the reservoir system is operated to provide the adjusted level of flow support for the 
coming months. 

(iv) At the next critical decision time (say May 1 or June 1 of each year), new forecasts are 
issued (given the actually observed predictor variables in previous months), and the 
process is repeated sequentially as the system evolves.  

 
This is an example of an adaptive operating rule that adjusts the level of flow support as 
hydrologic conditions are anticipated to change over time.  Such adjustments can be made at 
several critical times during each year to best leverage the information of the forecasts.      
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The benefits associated with forecast-informed operating policies are two-fold. First, higher 
levels of flow support could be provided during certain years without causing significant adverse 
impacts on composite storage or other water uses. Second, individual water users would know 
ahead of time what level of flow support is to be provided in the coming months. This is 
particularly important for water uses like commercial navigation since moving goods through the 
river network requires prior planning. Committing the reservoir system to support navigable 
flows provides assurance that navigation activities will indeed be supported and can be planned 
for the following weeks or months.   

Forecasts are equally valuable for other water uses such as hydropower.  Unlike current 
operational procedures, forecast-based operations would provide the energy sector with critical 
information on the amount and duration of dependable hydropower capacity and primary energy 
that the ACF system can commit several months in advance. If used effectively, this information 
can reduce energy generation costs and improve power planning and scheduling.      

2.6		 Using	Forecasts	to	Improve	Reservoir	Operations	

The general strategy outlined in the previous section was fine-tuned to develop the operating 
policy shown in Figure 2-6. The quantities to be forecasted are cumulative unimpaired flows at 
the Chattahoochee gage just downstream of J. Woodruff and are issued during two separate 
times of the year. The first forecast is issued at the beginning of April and considers a six-month 
future horizon spanning until October. Based on the value of these forecasts, different levels of 
flow support are committed for the upcoming month of May. If the forecasts are relatively high, 
the decision is to provide the highest pulse level (4 weeks at 16,000 cfs). On the other hand, if 
the forecasts are very low, the decision is to provide the lowest pulse level (2 weeks at 9,000 
cfs). Lastly, if the forecast is between these two levels, the decision is to support 4 weeks of 
9,000 cfs. 
 
In addition to making commitments for May flow support, estimates of July flow commitments 
are also made at the May 1 forecast time. However, these commitments are tentative and may be 
adjusted later in June, when updated forecasts are issued. This second set of forecasts is issued 
on June 1 and considers a four-month horizon spanning from June to October. Based on the 
value of these forecasts, different levels of flow support are committed for the upcoming month 
of July. Once again, the level of flow support varies with the forecasted inflow conditions. If the 
forecasts indicate drier conditions, flow support levels are decreased. Additionally, if the 
composite storage at the beginning of June is low (≤ 3,000,000 acre-feet), the decision is to 
provide the lowest pulse level.  
 
The ACF system is simulated using the previous operating policy and the resulting composite 
storage sequence is shown in Figure 2-7.  Under the forecast-based operations, the ACF 
composite storage remains significantly above that of the baseline for most of the simulation 
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period and falls to the baseline level only during severe droughts. With respect to the AltPulse 
water management scenario, the forecast-based operations show slight drawdowns during wet 
periods, and no significant differences during drought periods.  Thus, the forecast-based 
operations lead to an ACF composite storage sequence that is clearly better than that of the 
baseline and comparable to that of the AltPulse scenario.  But, how do the operating policies 
compare with respect to flow support?  
 
Figure 2-7 also lists the different levels of flow support that were committed during the 
simulation period. The AltPulse scenario only commits 9,000 cfs for 2 weeks in both May and 
July for every single year. On the other hand, the forecast-based operations can provide increased 
pulse commitments 80% of the time for May and 77% of the time for July. Additionally, 
commitments made in April for July only had to be adjusted downward in June 3% of the time.  
Namely, although tentative, the flow support commitments made in April for July are quite 
reliable. 

3.	 Summary	of	Drought	Prediction	and	Management	for	the	
ACF	

The previous sections outline the development and assessment of flow forecasting models and 
forecast-based operating policies for the ACF River basin. Given a set of indicator variables, 
forecasts of hydrologic conditions are generated at critical times of the year. This information is 
then combined with reservoir management rules to develop operating policies that can anticipate 
and respond to future hydrologic conditions.  

The study shows that skillful, multi-lead flow forecasts can be generated for all ACF sub-basins 
throughout the year. Best predictor variables include the unimpaired flows and soil moisture 
storages of the months preceding the date of the forecast.  Soil moisture storage sequences are 
generated by the GWRI rainfall-runoff model calibrated for each ACF sub-basin. Retrospective 
assessments carried out for the 1939 – 2008 historical period show that flow forecast skill is high 
several months in advance.   

Forecast accuracy and lead time could increase if rainfall forecasts were also available. Recently 
published research for the ACF shows that this is indeed possible [Chen and Georgakakos, 
2014].         

The study also shows that forecast-based operations are able to increase flow commitments 
downstream of J. Woodruff to provide benefits for environmental and navigation water uses. 
Increased flow commitments can be provided without causing impacts on upstream reservoir 
storages by using the forecasts to adjust the level of flow support depending on forecasted 
hydrologic conditions. While forecasts were only issued in April and June to make flow 
commitments for the following months of May and July, additional forecasts and release 
commitments could be also be applied in other months and seasons given that high quality flow 
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forecasts are available throughout the year. It should be stressed that while forecasts can be used 
to anticipate drought conditions, forecasts can also be of value during non-drought periods. For 
instance, if wet conditions are anticipated, then water uses could be met at higher than normal 
levels without significant system impacts. 

Forecast-based operations could provide benefits for a variety of water uses other than flow 
support for navigation and the environment.  For instance, forecasts of hydrologic conditions 
could be used to increase or decrease the hydropower generation commitments and/or water 
withdrawals from the system. Furthermore, forecasts can also be issued for sub-regions of the 
basins, such as forecasts for the Lanier and West Point watersheds, and used to fine-tune 
operations at those reservoirs. Additionally, forecasts in the Flint River basin may be able to 
support adaptive demand management to support increased low flow requirements.  

It is also important to note that forecasts can provide value even if they are not explicitly 
included into the reservoir operating policies.  In the case study, it was shown that higher pulse 
flows sometimes occur naturally without extra supporting releases. Knowledge that such flows 
are likely to occur would allow some stakeholders to benefit from these pulses even if the 
reservoirs do not adjust their releases. Similar concepts apply for other water users, such as the 
agricultural or hydropower sectors, that may be able to adjust their strategies based on forecasted 
hydrologic conditions. 

Thus, the study shows that forecast-based operations can indeed be developed and used to 
improve the management of the ACF by anticipating future hydrologic conditions and stresses, 
and proactively adjusting reservoir operations and water sharing procedures.  
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Figure 2-5: Simulated ACF Composite Storage for Different Levels of Flow Support 
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Figure 2-6: Forecast-based Operating Policy that Adjusts Pulse Magnitudes and Duration for 
Different Future Hydrologic Conditions 
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Figure 2-7: Simulated ACF Composite Storage for Different Operating Policies with and 
without Forecast Information 
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Appendix	A:	Model	and	Data	

The following sections describe the ACF River Basin models used as part of this study. The 
purpose of river basin modeling is discussed first, and the specific modeling tools employed in 
this process are identified together with the required input data sets. 

A.1	 Modeling	Purpose	and	Tools	

The ACF River Basin is a complex system with a variety of water uses and water management 
facilities. The development of a sustainable water management plan requires careful analysis to 
identify water management alternatives that may be of interest to the ACF stakeholders. The 
complexity and size of the basin necessitates the development and use of modeling tools. River 
basin models are designed to simulate the behavior of the river and characterize its ability to 
meet its environmental and socio-economic objectives under different water management 
alternatives.  

The modeling and assessment process typically includes several iterative and interactive phases. 
First, system characteristics, operating rules, and stakeholder interests and metrics are acquired 
through extensive stakeholder consultations. Second, suitable models of the basin and its 
environmental and socio-economic outputs are developed and validated.  Third, water 
management alternatives are formulated and modelled in close consultation with the basin 
stakeholders. Fourth, detailed assessments of each management alternative are carried out to 
determine how the system responds over time. The results consist of time series of various water 
related quantities such as reservoir storages and elevations; hydropower generation (primary and 
secondary); consumptive uses by sector; high, normal, and low river flows; environmental 
conditions; and other important variables. These results are systematically analyzed and inter-
compared to determine how well stakeholder interests are met by particular water management 
alternatives. Trade-offs between different water uses are explored and better management 
alternatives are identified. And fifth, the process is repeated until the basin stakeholders come to 
an agreement that the most satisfying management alternative(s) have been identified and the 
river meets their collective expectations.       

Two river basin models were used to study water management alternatives in the ACF Basin. 
The first model, ACF-DSS, identifies desirable reservoir operating policies that can satisfy a 
variety of water use objectives. ACF-DSS achieves this goal by combining simulation and 
optimization methods.  Promising ACF-DSS model runs were post-processed to identify 
operating rules to be further evaluated by HEC-ResSim. Unlike ACF-DSS, HEC-ResSim is a 
simulation model where the operating policies have to be specified a-priori. Namely, HEC-
ResSim does not find optimal operating rules, but rather evaluates the system response to pre-
defined rules. Additional HEC-ResSim simulations were performed to allow results and models 
to be easily passed on to the U.S. Army Corps of Engineers, who are most familiar with the 
HEC-ResSim software package. All of the modeled scenarios and results presented in the 
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remainder of this summary are based on HEC-ResSim model runs.  The results of the ACF-DSS 
are voluminous and have been provided to ACFS.   

A.2	 Temporal	Model	Resolution	

The natural availability of water varies throughout a year, as well as inter-annually, depending on 
whether the system is experiencing drought, normal, or wet conditions. A long inflow time series 
is a key model input to account for this natural variability and to ensure that water management 
alternatives are robust and perform well under a range of conditions. Specifically, daily flow data 
from the historical period from 1939-2008 is used to drive all model simulations and 
assessments.  This flow data comprise the unimpaired flow (UIF) sequence and is discussed 
further below.  

A.3	 Spatial	Model	Resolution	

The ACF River Basin model included 24 discrete locations in space, as shown in Figure A-1 and 
Table A-1. The locations are sub-divided into two general categories: reservoirs and river nodes. 
Reservoirs represent impoundments in a river behind which water can be stored, while nodes 
represent locations on the rivers. Any flows of water entering or exiting the river basin 
(withdrawals, inflows, net evaporation, etc.) are modelled to occur at one of these 24 locations. 
At a particular location, these flows represent aggregate quantities occurring within the river 
reach and sub-watershed between that location and the next upstream location.  

A.4	 Unimpaired	Flows	and	Net	Evaporation	Rates	

Unimpaired flows (UIFs) are a major input to the river basin model. These flows represent 
historical streamflows that have been processed to remove the effects of as many human 
influences as possible so that new water management alternatives can be compared without 
inheriting the effects of human activity (consumptive uses, reservoir operations, and other 
interventions). The flows denote the amount of water that is entering the river system and can be 
managed to provide for a variety of water uses through the basin. The UIFs used in this study are 
based on a dataset developed by the U.S. Army Corps of Engineers [USACE, 1997 & 2004], 
consisting of 23 daily time series, one for each modelled location, spanning the period from 1939 
to 2008. A slight modification to this dataset was made. The original reach between Griffin and 
Montezuma in the U.S. Army Corps of Engineers dataset was sub-divided to allow water 
planning and management metrics to be computed at an additional location along the Flint River. 
Specifically, a new node was added at Carsonville and used to create two smaller reaches: 
Carsonville (bounded by the upstream Griffin and downstream Carsonville nodes) and 
Montezuma (bounded by the upstream Carsonville and downstream Montezuma nodes).  

Net evaporation rates represent the difference between evaporation and precipitation from the 
reservoir surface. Daily time series of net evaporation rates for the major reservoirs in the basin 
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were also taken from the unimpaired flow dataset developed by the U.S. Army Corps of 
Engineers. 

GWRI has carried out a systematic assessment of the ACF UIFs [Georgakakos and 
Kistenmacher, 2012: Unimpaired Flow Assessment for the ACF River Basin].    

A.5	 Consumptive	Use	Targets	

Consumptive uses represent the difference between water withdrawals and returns in a particular 
river reach, and are based on data described in a separate report by Black and Veatch [Black & 
Veatch, 2013];  

Consumptive uses, consisting of twelve averages for each month of the year, were developed by 
compiling measured or estimated data corresponding to average water uses between 2002 and 
2011.  (For some water uses, this data was available for shorter time periods.) At each location, 
different water uses (e.g., municipal, industrial, thermal, and agricultural) were collected 
individually and then combined into aggregate consumptive use quantities. For modeling 
purposes, daily time series of consumptive uses were developed by assuming that (a) the 
monthly data repeats year after year from 1939 to 2008 and (b) each day within a particular 
month has the same use level. 

A.6	 Physical	Reservoir	Characteristics	

The characteristics of the system facilities in their current state were obtained from the HEC-
ResSim model described in USACE [2012]. Such data include storage-area-elevation curves, 
spillway gate and outlet capacities, tailwater curves, and hydropower generation capacities and 
efficiencies.  
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Table A-1: Modelled ACF River Basin Reservoirs and River Nodes 
 

Location River Type 
Buford Chattahoochee Reservoir 

Norcross Chattahoochee River Node 
Morgan Falls Chattahoochee Reservoir 

Atlanta Chattahoochee River Node 
Whitesburg Chattahoochee River Node 

West Point Dam Chattahoochee Reservoir 
West Point Gage Chattahoochee River Node 
Bartletts Ferry Chattahoochee Reservoir 

Goat Rock Chattahoochee Reservoir 
Oliver Chattahoochee Reservoir 

North Highlands Chattahoochee Reservoir 
Columbus Chattahoochee River Node 

W.F. George Chattahoochee Reservoir 
George Andrews Chattahoochee Reservoir 

Griffin Flint River Node 
Carsonville Flint River Node 
Montezuma Flint River Node 

Albany Flint River Node 
Newton Flint River Node 

Bainbridge Flint River Node 
J. Woodruff Chattahoochee/Flint Confluence Reservoir 

Chattahoochee Apalachicola River Node 
Blountstown Apalachicola River Node 

Sumatra Apalachicola River Node 
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Figure A-1: A map of the ACF river basin.  
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Appendix	B:	Baseline	Operations	

The following sections present the existing ACF operating procedures and conditions. General 
concepts pertaining to the modeling of different water uses are discussed first. Next, operating 
rules pertaining to local basin objectives and projects are presented.  Lastly, system-wide 
operations are covered.  We note that, while the modelled operations are intended to mimic the 
actual operations as best as possible, they might differ slightly from the way in which the U.S. 
Army Corps of Engineers operates the system in real-life. Nonetheless, the current operations, 
physical characteristics, and current water use conditions serve as a baseline scenario against 
which changes in reservoir operations, system infrastructure, and water use levels are compared.   

B.1	 General	Modeling	Concepts	

A multitude of water uses exist throughout the basin and are included in the model of the ACF 
River Basin. When natural conditions are favorable, some water uses can be met without any 
particular operating provisions. If this is not possible, special operating rules can be used to 
guide reservoirs to make releases that meet specific water uses. Operating rules are only defined 
at reservoirs, but they can also be designed to provide benefits at downstream river nodes.  A 
hierarchy-based approach is used to model reservoirs with multiple operating rules. Priorities are 
assigned to each individual operating rule, and water uses associated with the highest priority 
rule are met first. After the highest priority rule has been considered, reservoir operations focus 
on meeting the next priority rule, and so on. However, lower priority rules can only be met if 
doing so does not negatively impact a water use associated with a higher priority rule. In the 
absence of any operating rules at a particular reservoir, a default operating rule attempts to keep 
the reservoir storage at the top of the conservation pool. If a reservoir does include other 
operating rules, then this default rule is also implemented as the lowest priority rule; i.e., the 
reservoir storage is targeted to be at the top of the conservation pool, but may deviate from this 
target if other rules require releases that increase or decrease reservoir storage. Meeting 
consumptive use targets throughout the basin has not been defined as part of operating rules at 
any ACF reservoir. However, consumptive uses are always withdrawn from the system if the 
simulated flows and storages are large enough to allow this to occur. Additionally, if a reservoir 
is operated to meet minimum flow targets at a downstream location, then losses due to 
consumptive uses between the reservoir and that location are also provided for in determining 
reservoir releases. 

It is noted that other important water uses beyond those associated with the operating rules 
discussed in the following sections exist. For instance, some stakeholders may advocate for a 
certain flow regime along a stretch of the river even though supporting such a regime is currently 
not part of the U.S. Army Corps of Engineers operating rules. Such water uses were not 
considered in the following sections, not because they are unimportant, but because the focus 
here is to describe the operating rules encoded in the model. The extent to which system 
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operations meet stakeholder interests not explicitly encoded in the model can be evaluated by 
computing the associated performance metrics from model results, as described in Section 5.1. 

B.2	 Local	Reservoir	Operations	

The following sections proceed from upstream to downstream and describe the operating rules 
used to meet various water use requirements. 

B.2.1	 Buford	Dam	to	Whitesburg	

The stretch from Buford Dam to Whitesburg includes two reservoirs (Buford Dam and Morgan 
Falls), and three nodes along the Chattahoochee River. 

Buford Dam (Lake Lanier) is modelled as the most upstream location and reservoir on the 
Chattahoochee River. Table B-1 lists the local operating rules at Buford.  The rules are arranged 
in order of decreasing priority, with rules listed first having higher priority than the rules listed 
later. Operating rules include goals/constraints to be met at the dam (such as hydropower 
generation, minimum releases requirements, and keeping storage at the top of the conservation 
zone, among others), as well as goals/constraints to be met at downstream river nodes (such as 
keeping downstream flow rates above and below certain levels). Operating rules at Buford may 
vary with reservoir elevation. Action zones, shown in Figure B-1, represent ranges in the 
reservoir elevation where different operating rules may be applied. 

Morgan Falls is modelled as a run-of-the-river reservoir and is not subject to explicit operating 
rules. Instead, the reservoir is operated such that outflows equal inflows. 

B.2.2	 West	Point	Dam	to	George	Andrews	

The stretch of the Chattahoochee River from West Point Dam to George Andrews includes seven 
reservoirs and two river nodes (West Point Gage and Columbus). Out of the seven reservoirs, 
only West Point Dam and W.F. George are subject to explicit operating rules, while the 
remaining reservoirs (Bartlett’s Ferry, Goat Rock, Oliver, North Highlands, and George 
Andrews) are modelled as run-of-the-river facilities. 

Tables B-2 and B-3 list the local operating rules for West Point Dam and W.F. George, 
respectively. These rules are again arranged in order of decreasing priority. Operating rules at 
both reservoirs may also vary with reservoir elevation according to the action zones depicted in 
Figures B-2 and B-3. It should be noted that the top of the West Point Dam conservation pool 
(Zone 1) is higher in the winter than the top of the conservation pool currently being used by the 
U.S. Army Corps of Engineers.  
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B.2.3	 Flint	River	

The Flint River is represented by five river nodes: Griffin, Carsonville, Montezuma, Albany, 
Newton, and Bainbridge. There are no official operating rules for the Flint River since there are 
no reservoirs being modelled. Consumptive uses are still considered at each of these river nodes. 

B.2.4	 J.	Woodruff	Dam	to	Sumatra	

The Chattahoochee and Flint Rivers merge into the reservoir behind J. Woodruff Dam. 
Continuing further downstream, three additional river nodes are used to represent the 
Apalachicola River: Chattahoochee Gage, Blountstown, and Sumatra.  

The local operating rules for J. Woodruff are listed in Table B-4 in order of decreasing priority 
and may vary with reservoir elevation according to the action zones depicted in Figure B-4. 
Note that there are some operating rules for maintaining certain flow regimes immediately 
downstream of J. Woodruff that are not listed in Table B-4. These rules are discussed in further 
detail in the Section 3.3.2 because they are a function of basin-wide conditions. 

B.3	 System‐Wide	Operations	

Several operating rules are based on conditions throughout the ACF Basin. Specifically, the 
storages in the major federal reservoirs are kept in balance by coordinating operations across the 
system. Furthermore, some operating rules pertaining to the J. Woodruff outflows depend on 
storages and inflows further upstream.    

B.3.1	 Reservoir	Coordination	

The U.S. Army Corps of Engineers operates the major reservoirs (Buford, West Point, W.F. 
George, and J. Woodruff) in the ACF Basin as a system, by coordinating the operations between 
downstream and upstream reservoirs. The purpose of reservoir coordination is to keep the 
reservoir storages in the individual reservoirs balanced and avoid situations where one reservoir 
is empty and another one is full. Tandem operations are used to balance reservoir storages since 
all of the major reservoirs are located in series. Tandem operations compare the storages of an 
upstream reservoir and a downstream reservoir. If the downstream reservoir storage is lower than 
the storage in the upstream reservoir, additional releases are made from the upstream reservoir to 
increase the downstream storage. On the other hand, if the downstream reservoir storage is 
higher than that of the upstream reservoir, no additional releases are required from the upstream 
reservoir.  

Coordination between upstream and downstream reservoirs is performed for each of the adjacent 
major reservoirs in the ACF Basin proceeding from upstream to downstream. Namely, Buford 
Dam balances with West Point Dam, West Point Dam balances with W.F. George, and W.F. 
George balances with J. Woodruff. Balancing operations between two adjacent reservoirs are 
performed by first using the information provided in Table B-5 to determine which action zones 
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are supposed to be balanced. If the downstream reservoir is within an action zone that is higher 
than the action zone corresponding to the upstream reservoir, no extra releases from the upstream 
reservoir are required. Otherwise, the upstream reservoir is required to make additional releases. 

The magnitude of the releases required to balance the reservoirs is determined by computing how 
full each action zone is via the following ratio for each reservoir:  

(Actual storage - storage at bottom of action zone)/ (storage at top of action zone- storage at 
bottom of action zone). 

For the baseline operations, releases are made from the upstream reservoir until its ratio equals 
the ratio of the downstream reservoir. 

B.3.2	 J.	Woodruff	Minimum	Release	Requirements	

The Revised Interim Operations Plan (RIOP) used by the U.S. Army Corps of Engineers to 
operate the system includes two operating rules pertaining to the magnitude of releases out of J. 
Woodruff. Both rules are functions of variables that depend on water quantities further upstream 
of J. Woodruff. Specifically, the following two variables are used: 

Composite Storage: The sum of the storages in the three largest upstream reservoirs (Buford, 
West Point, and W.F. George) 

Basin Inflows: The sum of the unimpaired inflows entering ACF basin above and including J. 
Woodruff, minus consumptive uses and net evaporation losses. Basin inflows are computed both 
on each day (one-day basin inflow) and as a moving average over the seven previous days 
(seven-day basin inflows). 

The first rule imposes minimum release requirements out of J. Woodruff, as shown in Table B-6. 
The requirements vary according to the amount of composite storage and seven-day basin 
inflows. For composite storage, several different zones are defined, as shown in Figure B-5. 
Zones with higher levels of composite storage require higher minimum releases than zones with 
lower composite storage. Drought operations are triggered when the composite storage is in Zone 
4 or lower and, once triggered, remain in effect until the composite storage has recovered to 
Zone 3.  

However, drought operations are not modelled in any of the water management scenarios 
presented in this report because they can introduce significant non-linear effects and non-
comparable results. For instance, if a management scenario triggers drought operations, then its 
flow requirements would be reduced. On the other hand, a management scenario that does not 
trigger drought operations (or does so later), would be required to release more water and thereby 
reduce its storage.  To avoid such complications, drought operations were disabled in all of the 
water management scenarios.  This does not change the conclusions of the assessments and, if 
necessary, all management scenarios can be re-evaluated with drought operations in place. 
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Minimum release requirements usually increase with increasing seven-day basin inflows, though 
when composite storage falls into Zone 4 or the drought zone, they are no longer dependent on 
basin inflows and are reduced to 5,000 and 4,500 cfs, respectively. Requirements also vary 
throughout the year, being higher from March to May, lower from June to November, and 
constant at 5,000 cfs from December to February. 

The second rule limits the fall-rates (i.e., the decrease of the water level elevation on consecutive 
days) downstream of J. Woodruff. Limits only apply to falling elevations and not to rising ones. 
In the model, fall-rate limits are enforced through constraints on the decrease in J. Woodruff 
releases by converting them to limits on the releases. Figure B-6 shows the maximum allowed 
decrease of daily releases as a function of the flow rate out of J. Woodruff. When the system is in 
drought operations, the fall-rate limits do not apply. Instead, the drop in the one-day basin 
inflows on consecutive days is used to limit the decrease in releases out of J. Woodruff.  

It should be noted that these two rules only place constraints on the minimum release 
requirements and maximum fall-rates, and do not specify the exact magnitude of the J. Woodruff 
releases. Depending on the state of the system, it is possible that releases in excess of the 
minimum release requirements and/or fall-rates lower than the maximum limit may occur.
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Figure B-1: Buford Action Zones: Baseline Operations 

Table B-1: Buford Operating Rules: Baseline Operations 

Top of Dam None. 

Flood Control 

Release < 10,000 cfs. 
Flow at Norcross < 11,000 cfs. 
Flow at Atlanta < 13,200 cfs. 

Release > 600 cfs through small turbine. 
Flow at Atlanta > 800 cfs. 

Zone 1 
(Conservation) 

Release < 10,000 cfs. 
Flow at Norcross < 11,000 cfs. 
Flow at Atlanta < 13,200 cfs. 

Release > 600 cfs through small turbine. 
Power Generation ≥ 3 hours at full capacity. 

Flow at Atlanta > 800 cfs. 
Tandem Operations with West Point Dam. 

During fish spawning (April-June), limit decreases in reservoir elevation. 

Zone 2 
Zone 3 

Release < 10,000 cfs. 
Flow at Norcross < 11,000 cfs. 
Flow at Atlanta < 13,200 cfs. 

Release > 600 cfs through small turbine. 
Power Generation ≥ 2 hours at full capacity. 

Flow at Atlanta > 800 cfs. 
Tandem Operations with West Point Dam. 

During fish spawning (April-June), limit decreases in reservoir elevation. 

Zone 4 

Release < 10,000 cfs. 
Flow at Norcross < 11,000 cfs. 
Flow at Atlanta < 13,200 cfs. 

Release > 600 cfs through small turbine. 
Flow at Atlanta > 800 cfs. 

Tandem Operations with West Point Dam. 
During fish spawning (April-June), limit decreases in reservoir elevation. 

Operating 
Inactive 

Release net reservoir inflow up to 600 cfs during drought operations. 

Inactive None. 
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Figure B-2: West Point Dam Action Zones: Baseline Operations 

 

Table B-2: West Point Dam Operating Rules: Baseline Operations 

Zone Rules 
Top of Dam None. 

Flood Control 

Induced surcharge operations. 
Release > 675 cfs through small turbine. 

Power Generation ≥ 4 hours at full capacity. 
Limit fall-rate of releases to 3,000 cfs/hr 

Release < 40,000 cfs. 

Zone 1 
(Conservation) 

Release > 675 cfs through small turbine. 
Power Generation ≥ 4 hours at full capacity. 

Release < 40,000 cfs. 
Tandem Operations with W.F. George. 

During fish spawning (April-June), limit decreases in reservoir elevation. 

Zone 2 
Zone 3 

Release > 675 cfs through small turbine. 
Power Generation ≥ 2 hours at full capacity. 

Release < 40,000 cfs. 
Tandem Operations with W.F. George. 

During fish spawning (April-June), limit decreases in reservoir elevation. 

Zone 4 

Release > 675 cfs through small turbine. 
Release < 40,000 cfs. 

Tandem Operations with W.F. George. 
During fish spawning (April-June), limit decreases in reservoir elevation. 

Inactive None. 
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Figure B-3: W.F. George Action Zones: Baseline Operations 

 

Table B-3: W.F. George Operating Rules: Baseline Operations 

Zone Rules 
Top of Dam None. 

Max Flood 
Induced surcharge operations. 

Release < 40,000 cfs. 

Flood Control 

Induced surcharge operations. 
Make minimum releases to keep the difference between reservoir and 

downstream tailwater elevations below certain thresholds.  
Power Generation ≥ 4 hours at full capacity. 

Release < 30,000 cfs if reservoir elevation <189; 
Release 40,000 cfs otherwise. 

Tandem Operations with J. Woodruff. 

Zone 1 
(Conservation) 

Make minimum releases to keep the difference between reservoir and 
downstream tailwater elevations below certain thresholds. 

Release < 30,000 cfs if reservoir elevation < 189; 
Release 40,000 cfs otherwise. 

Power Generation ≥ 4 hours at full capacity. 
Tandem Operations with J. Woodruff. 

During fish spawning (April-June), limit decreases in reservoir elevation. 

Zone 2 
Zone 3 

Make minimum releases to keep the difference between reservoir and 
downstream tailwater elevations below certain thresholds. 

Power Generation ≥ 2 hours at full capacity. 
Tandem Operations with J. Woodruff. 

During fish spawning (April-June), limit decreases in reservoir elevation. 

Zone 4 

Make minimum releases to keep the difference between reservoir and 
downstream tailwater elevations below certain thresholds. 

Tandem Operations with J. Woodruff. 
During fish spawning (April-June), limit decreases in reservoir elevation. 

Inactive None.
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Figure B-4: J. Woodruff Action Zones: Baseline Operations 

 

Table B-4: J. Woodruff Operating Rules: Baseline Operations 

Zone Rules 
Top of Dam None. 

Flood Control Make minimum releases to keep the difference between reservoir and 
downstream tailwater elevations below certain thresholds. 

 Comply with Endangered Species Act: Limit fall-rate of river stage 
downstream of J. Woodruff as specified in Figure 3-6 and make minimum 

releases as specified in Table 3-6. 
Conservation 

Zone 1 
Zone 2  
Zone 3 
Zone 4 

Comply with Endangered Species Act: Limit fall-rate of river stage 
downstream of J. Woodruff as specified in Figure 3-6 and make minimum 

releases as specified in Table 3-6. 
Make minimum releases as specified in Table 3-6. 

Sturgeon Spawning: From Mar-May, limit the drop in downstream river 
stage to be less than 8 feet over a 2 week moving window when flows are < 

40,000 cfs. 
Fish Spawning: From April to May, limit the daily drop in downstream river 

stage to be 0.5 ft. 
During fish spawning (April-June), limit decreases in reservoir elevation. 
During fish spawning (April-June), limit decreases in reservoir elevation. 

Operating 
Inactive 

Release net reservoir inflow up to 4,550 cfs during drought operations, 
otherwise net reservoir inflow up to 5,050 cfs. 
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Table B-5: Reservoir Zones To Be Balanced for Reservoir Coordination: Baseline 
Operations. 

Buford West Point W.F. George J. Woodruff 
Top of Dam Top of Dam Top of Dam Top of Dam 

Flood Control Flood Control Flood Control Flood Control 
Zone 1 Zone 1 Zone 1 Zone 1 
Zone 2 Zone 2 Zone 2 Zone 2 
Zone 3 Zone 3 Zone 3 Zone 3 
Zone 4 Zone 4 Zone 4 Zone 4 

Operating Inactive Inactive Inactive Operating Inactive 
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Figure B-5: RIOP Composite Storage Zones: Baseline Operations 

 

 

Table B-6: RIOP Minimum Release Requirements out of J. Woodruff: Baseline Operations 

March – May 
Composite Storage Zone Basin Inflows (cfs) Minimum Releases (cfs) 

Zone 1 and Zone 2 

≥ 34,000 25,000 
≥ 16,000 and < 34,000 16,000 + 0.5*(Basin Inflows-16,000) 
≥ 5000 and < 16,000 Basin Inflows 

< 5,000 5000 

Zone 3 

≥ 39,000 25,000 
≥ 11,000 and < 39,000 11,000 + 0.5*(Basin Inflows-11,000) 
≥ 5,000 and < 11,000 Basin Inflows 

< 5,000 5,000 
 

June- November 
Composite Storage Zone Basin Inflows (cfs) Minimum Releases (cfs) 

Zone 1, Zone 2, and Zone 
3 

≥ 24,000 16,000 
≥ 8,000 and < 24,000 8,000 + 0.5*(Basin Inflows-8,000) 
≥ 5000 and < 8,000 Basin Inflows 

< 5,000 5000 
 

December - February 
Composite Storage Zone Basin Inflows (cfs) Minimum Releases (cfs) 
Zone 1, Zone 2, and Zone 

3 
Any 5,000 

 
All Months 

Composite Storage Zone Basin Inflows (cfs) Minimum Releases (cfs) 
Zone 4 Any 5,000 

Drought Zone Any 4,500 
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Figure B-6: RIOP Fall-Rate Limits Downstream of J. Woodruff: Baseline Operations. 
Elevation Change Limits Have Been Converted to Limits on the Change of Releases. 
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Progress Report (May 15, 2015) 

The objectives of the study are to:  

(1) conduct chemical analysis of pharmaceuticals in oysters, suspended particles and sediments 
sampled bimonthly from estuarine environments of coastal Georgia that are susceptible to 
pharmaceutical pollution;  

(2) determine age-related pharmaceutical deposition in oyster tissues to evaluate the use of native 
oysters as pharmaceutical biomonitors;  

(3) develop a pharmaceutical pollution index and an oyster condition index for each of the 
sampling areas within each estuary as measures of environmental and biological (oyster) health in 
these areas related to pharmaceutical pollution;  

(4) calculate a pharmaceutical risk quotient for each of the pharmaceuticals analyzed in the study,  

(5) model environmental fate of pharmaceuticals in the estuarine environment, based on 
partitioning within oysters and environmental media (water, suspended particles and sediment) 

Because of an invaluable partnership with Dr. Matthew Henderson (US EPA Region IV, Athens, 
GA) we have expanded our original analyte list from 8 pharmaceuticals to include 42 
contaminants of emerging concern, including pharmaceuticals, personal care products and 
pesticides.  With additional seed funding from various sources and in collaboration with Dr. 
Henderson we have also added metabolomics as an additional measure of biological effects in 
oysters during 4 sample events to strengthen the biological endpoints for calculation of the 
pharmaceutical and emerging contaminants risk quotient.  In February 2015 we were granted a 
no-cost extension of this GA Water Resources Grant to extend our sampling dates through June 
2015 and accommodate the additional analytical workload generated by these collaborations. 

Progress to Date: Eastern oysters (Crassostrea virginica) have been sampled from natural oyster 
beds at Brunswick and Sapelo Island, Georgia bimonthly since October 2013, continuing through 
June 2015. Dispositional sediment samples, 1-liter water grab samples and filtered suspended 
sediment particles have been collected at each sample site since October 2014, also continuing 
through June 2015. The LC-MS/MS method validation for contaminants of emerging concern 
(CECs) in oyster tissue and water samples was completed in late August 2014 and method 
validation for sediments and suspended solids was recently completed in mid-May 2015. All 
analyses have been conducted at the US EPA ORD facility at Athens, GA. 

Study Site Selection & Sample Regimen:  Four study sites were chosen along the Brunswick 
River to coordinate with an ongoing UGA Marine Extension study examining the effects of land 
use and septic tank densities on water quality. These sites are affected by a medium-sized city 
(metropolitan area population ~100,000) and include sites with C. virginica beds subjected to 



effluents from local wastewater treatment plants (WWTP) (due to tidal influences) and from 
septic fields in local housing areas (Figure 1). At Brunswick, Plantation Creek is the presumed 
reference site due to its location away from septic fields and WWTPs. Three sites are located on 
Sapelo Island, a small island with controlled (ferry) access and a small population (60-100 
people, including island visitors) that is entirely serviced by septic tanks.  The Sapelo Island sites 
(Figure 1) are located on small tidal creeks selected to include one site (Oak Dale Creek) where 
pharmaceuticals have been detected in oysters (Fuller 2012), a site adjacent to the UGA Marine 
Institute and a presumed reference site (Cabretta Creek).  
 

 

 
Analyte Concentration Results – Oyster tissues 
Analyte extraction and LC/MS/MS analyses have been completed for oysters collected in October 
2013, April 2014, June 2014 and August 2014. For ease of interpretation, individual analytes 
have been grouped by chemical class and reported as mean ± [95% confidence intervals (CI)]. 
Target CECs include: selective serotonin reuptake inhibitors (SSRIs: sertraline, fluoxetine), 
reproductive hormones (norethindrone, norgestrel, medoxyprogesterone, 17α-ethinylestradiol), 
anti-epileptics (carbamazepine), stimulants (caffeine, methylphenidate), antihistamines 
(diphenhydramine), analgesics (ibuprofen, naproxen, acetaminophen, diclofenac), 
heart/cholesterol medication (atenolol, propranolol, valsartan, gemfibrozil) personal care products 
(triclocarban, triclosan, DEET), herbicides (2,4-D, clofibric acid, atrazine), pesticides 
(imidacloprid, thiaclorpid), industrial pollutants (bisphenol-A) and illicit drugs (cocaine, 
benzoylmethylecgonine, tetrahydrocannabinol). Industrial pollutants and illicit drugs have not yet 
been analyzed. 
  
October 2013: The SSRIs had the highest mean oyster tissue concentration at both Brunswick 
(BR) and Sapelo Island (SI) (Figures 2 and 3): BR, mean = 48.9 ng/g [38.5, 59.3]; SI, mean = 
45.0 ng/g [0.0, 150.1]), followed by the analgesics (BR, mean = 45.0 ng/g [0.0, 121.3]; SI, mean 
= 28.1 ng/g [26.5, 29.5]), cholesterol medication (BR, mean = 19.7 ng/g [4.9, 34.4]; SI, mean = 
34.9 ng/g [2.0,68.0]), personal care products (BR, mean = 14.0 ng/g [13.5, 14.4]; SI, mean = 21.3 
ng/g [12.1, 30.4]), antihistamines (BR, mean = 7.0 ng/g [6.0, 8.0]; SI, mean = 3.5 ng/g [2.3, 4.6]), 

Figure 1: (A) Septic tank densities at specified distances (meters) from each sample site. (B) 
Distance (km) to local WWTPs from each sample site in Brunswick, Georgia.  There is not 
a WWTP in McIntosh County that would impact Sapelo Island.   



and hormones (BR, mean = 7.8 ng/g [5.4, 10.2]; SI, mean = 6.0 ng/g [2.1, 9.9]). The remaining 
chemical classes were detected at mean concentrations <5 ng/g.  
 
April 2014: Cholesterol medication had the highest mean oyster tissue concentration at both 
Brunswick and Sapelo Island (Figures 2 and 3):  BR, mean = 25.1 ng/g [7.4, 42.8]; SI, mean = 
16.0 ng/g [0.35, 31.6], followed by the analgesics (BR, mean = 8.2 ng/g [1.9, 14.6]; SI, mean = 
22.7 ng/g [6.6, 38.8]), personal care products (BR, mean = 5.7 ng/g [4.2, 7.3]; SI, mean = 14.5 
ng/g [11.3, 17.7]), hormones (BR, mean = 9.9 ng/g [3.7, 16.1]; SI, mean = 10.3 ng/g [1.6, 19.0]) 
and SSRIs (BR, mean = 4.1 ng/g [0.0, 14.5]; SI, mean = 2.3 ng/g [1.1, 3.5]). The remaining 
chemical classes were detected at mean concentrations <5 ng/g. 
 
June 2014: The SSRIs had the highest mean oyster tissue concentration at Brunswick and Sapelo 
Island (Figures 2 and 3): BR, mean = 51.0 ng/g [0.0, 181.2]; SI, mean = 114.5 ng/g [±0.0, 341.6], 
followed by analgesics (BR, mean = 36.1 ng/g [0.0, 74.0]; SI, mean = 103.3 ng/g [0.0, 214.6]), 
cholesterol medication (BR, mean = 10.3 ng/g [6.1, 14.5]; SI, mean = 33.0 ng/g [23.3, 42.6]), 
personal care products (BR, mean = 14.0 ng/g [8.6, 19.4]; SI, mean = 30.1 ng/g [0.8, 59.3]), 
hormones (BR, mean = 7.4 ng/g [1.2, 16]; SI, mean = 7.3 ng/g [0.0, 8.2]), antihistamines (BR, 
mean = 8.2 ng/g [0.0, 17.6]; SI, mean = 12.3 ng/g [0.0, 26.5]) and blood pressure medication (BR, 
mean = 2.9 ng/g [1.4, 4.5]; SI, mean = 6.4 ng/g [0.0, 19.3]). The remaining chemical classes were 
detected at mean concentrations <5 ng/g. 
 
August 2014: Personal care products had the highest mean oyster tissue concentrations at 
Brunswick and Sapelo Island (Figures 2 and 3): BR, mean = 9.5 ng/g CI [8.0, 11.0]; SI, mean = 
18.1 ng/g CI [16.0, 20.2], followed by cholesterol medication (BR, mean = 10.6 ng/g CI [6.8, 
14.4]; SI, mean = 14.9 ng/g CI [14.6, 15.2]) and analgesics (BR, mean = 3.7 ng/g CI [3.1, 4.3]; 
SI, mean = 5.2 ng/g CI [4.4, 5.9]). The remaining chemical classes were detected at mean 
concentrations <5 ng/g. 
	
  

 

 

Figure 2: Mean oyster tissue concentrations (ng/g) at natural oyster beds in Brunswick, Georgia 



 

Analyte Concentration Results – Water 
 
October 2014: Analysis of 1-liter grab samples from each site detected caffeine, methylphenidate, 
diphenhydramine, DEET and atrazine ranging from <1 ng/L to 129 ng/L [CI]. Of the analytes 
detected at Brunswick (BR) and Sapelo (SI), DEET had the highest mean water concentration 
(BR, mean = 88.9 ng/L [61.7, 116.1]; SI, mean = 26.4 ng/L [9.6, 43.3]).  Mean DEET 
concentrations at Brunswick were significantly higher (based upon 95% confidence intervals) 
compared to Sapelo Island. Caffeine had the second highest mean water concentration (BR, mean 
= 11.3 ng/L [11.3, 11.4]; SI, mean = 11.37 ng/L [11.35, 11.39]), followed by methylphenidate 
(BR, mean = 2.8 ng/L [2.79, 2.84]; SI, mean = 3.4 ng/L [1.8, 6.2]), diphenhydramine (BR, mean 
= 1.9 ng/L [1.4, 2.5]; SI, mean = 1.7 ng/L [1.1, 2.2]) and atrazine (BR, mean = 0.84 ng/L [0.66, 
1.0]; SI, mean = 2.24 ng/L [0.0, 5.0]).  
 
December 2014: Analysis of 1-liter grab samples from each site detected caffeine, 
methylphenidate, diphenhydramine, DEET and atrazine ranging from 1.7 ng/L to 95.5 ng/L [CI]. 
Again, DEET had the highest mean water concentration of the analytes detected at Brunswick 
and Sapelo (BR, mean = 75.4 ng/L [53.6, 97.2]; SI, mean = 37.9 ng/L [18.5, 57.2]). Caffeine had 
the second highest mean water concentration (BR, mean = 12.3 ng/L [112, 13.4]; SI, mean = 14.2 
ng/L [11.5, 17.0]), followed by diphenhydramine (BR, mean = 6.7 ng/L [0.0, 14.2]; SI, mean = 
1.8 ng/L [1.2, 2.5]), methylphenidate (BR, mean = 2.8 ng/L [2.76, 2.90]; SI, mean = 2.9 ng/L 
[2.8, 3.0]) and atrazine (BR, mean = 5.0 ng/L [4.1, 6.0]; SI, mean = 2.2 ng/L [1.6, 2.9]). Mean 
trazine concentrations were significantly higher compared to Sapelo (based upon 95% confidence 
intervals). 
 
Only 5 of 30 analytes were detected in the water samples in October and December 2014 and 
there were only two statistically significant differences in mean analyte concentrations (DEET in 
October and atrazine in December, both higher mean concentrations at Brunswick). The similar 
mean concentrations at both locations is intriguing as Brunswick has a much larger population, 
with several WWTPs and >1000 septic fields, while Sapelo has fewer than 100 permanent 
residents and <100 septic fields. We hypothesize that the greater discharge of the Brunswick 

Figure 3: Mean oyster tissue concentrations (ng/g) at natural oyster beds on Sapelo Island, Georgia 



River could be diluting contaminant concentrations, while the small tidal creeks on Sapelo Island 
could be concentrating contaminants.   
 
Condition Index 
The condition index is a measure of the overall fitness of the organisms.  Mean [CI] values for all 
oysters collected on Sapelo Island (mean = 7.33 [6.89, 7.77]) and Brunswick (mean = 5.98 [5.62, 
6.34]) suggest that overall the oyster populations on Sapelo Island are a significantly more robust 
population (based on 95% confidence intervals), despite the finding that oysters in Brunswick and 
Sapelo Island have similar body burdens of emerging contaminants. This result suggests that 
other factors (environmental, other contaminant classes) are adversely affecting the health of 
oysters at Brunswick, resulting in an overall reduced condition.  
 
Work	
  to	
  be	
  Completed	
  	
  	
  
Field collection of samples will end in June 2015 and all of the samples will be extracted and 
analyzed by December 2015.  Oyster tissue data combined with the condition indices and 
metabolomics data (from another related study) will be incorporated into calculation of a 
pharmaceutical risk quotient.   Environmental data (analyte concentrations in water, sediment and 
suspended particles) will be used to model probable exposure pathways for the detected CECs.  
All data and metrics will be analyzed to detect any site or seasonal differences.  

A subset of archived oyster shells will be sent to Dr. Aaron Shoults-Wilson (effective 8/15, at 
Illinois Wesleyan University) in September 2015. Over the past year Dr. Shoults-Wilson has 
developed a method to age oysters through microscopic analysis of thin sections of oyster shells.  
He will apply this method to our shells of different sizes to determine if size relates to age of 
oyster and consequently, exposure duration for analytes in our study.   

We anticipate completing the final report for the project in spring of 2016.  
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Introduction 
Georgia’s salt marshes are one of the most valuable and productive ecosystems in the 
state.  The extensive tidal flats and dense vegetation dampen wave and current energy, 
serving as an invaluable buffer between the developed and populated Georgia coastline 
and strong offshore storms, such as hurricanes.  In addition, dampened currents allow 
for slow moving waters in estuaries, making excellent nursing habitats for numerous 
shellfish and fish species.  Furthermore, vegetation and animals receive vital nutrients 
transported from the open ocean during floodward tidal currents and in return ebbward 
tidal currents bring food and nutrients from the salt marsh out to offshore fish species.  
By fostering environments for both in and offshore commercial fisheries, salt marshes 
are in part responsible for $224,956,000 of income and 7,390 jobs, adding 
$369,134,000 value for the State of Georgia (US Department of Commerce 2009). 
 
Both the livelihood and benefits of salt marshes depend on the hydrodynamics in the 
estuaries and across the surrounding tidal marshes.  It has been shown that the 
hydrodynamic exchange between the channels and marsh tidal flats dictate the tidal 
asymmetry of an estuary, or in other words the relative strengths and lengths of flood 
and ebb tide.  Tidal asymmetry has direct effects on tidal currents, water levels, and 
residence times of any particulate tracer whether biological, chemical, sediment, or 
pollutant (Blanton et al., 2002; Dronkers, 1986).  Thus, it has direct consequences for 
the export/import of vital nutrients and sediments for the sustenance of offshore 
fisheries and within the marshes themselves.  
 
In 2002, Georgia’s salt marshes were threatened with an extensive dieback over 800 
ha, threatening the commercial fishing industry and increasing the state’s vulnerability to 
destructive storms (Ogburn, 2004).  A major restoration initiative has been the ‘living 
shoreline’ approach which utilizes natural materials and organisms for shoreline 
protection, and has been monitored through field measurements.  The significance of 
such a dieback event is clear from the extensive private and public research dedicated.  
Much research has been invested in searching for the dieback cause and on developing 
restoration techniques, yet much of the hydrodynamic processes within the marshes still 
remain unknown. 
 
In particular, flow into and out of the marsh is driven by pressure gradients resulting 
from water level differences between the marsh and main channel.  These pressure 
gradients in turn directly depend upon the relative timing of the peak water levels within 
the marsh and the main channel.  Any process which impedes the flow within the 
marsh, such as friction due to vegetation, will cause a lag in the water level elevation 
directly affecting the pressure gradients and induced fluxes.  This alters the tidal 
asymmetry of the estuary, which has an effect on particulate exchange for the marshes 
and offshore waters.  Thus, it is imperative to obtain the necessary field measurements 
to determine the specific relationship between the marsh and main channel. 
 
  



 

 

The specific project objectives were as follows: 
 
1)  Obtain comprehensive synchronized water level and velocity field measurements in 
a Georgia salt marsh. 
 
2)  Analyze the data obtained in the field project to determine the relationship between 
the pressure gradient forcing and flows in the marsh and how this relates to the flow in 
the main channel. 
 
Pilot Field Project 
The experiment site (shown in Figure 1) was selected due to the researcher’s prior field 
experience with the site and the availability of numerical model data of water levels 
(Bomminayuni et al., 2012; Bruder et al., 2014) and GPS survey of the marsh 
bathymetry.  Because of the known difficulties with measuring accurate pressure 
gradients in a marsh environment, an initial pilot study was performed on August 10-11, 
2014 to test the field techniques. 
 

 
Figure 1: Map of Ogeechee Estuary.  Red area marks are Rose Dhu Island.  Inset 
image is map of southeastern United States for reference. 
 
The pressure transducers used for this study are Onset HOBO Titanium Water Level 
Data Logger’s, model U20-001-01-Ti. The device, pictured in Figure 2, provided 
temperature and absolute pressure measurements. The pressure measurements were 
converted to water level measurements through customized Matlab scripts using 
pressure readings from a nearby weather station (Skidaway Institute of Oceanography, 
Savannah, GA – see Figure 1).  Three of these instruments were purchased and 
deployed in the marsh, programmed to record internally at 30 second intervals. 
 



 

 

 
Figure 2: Photograph and Diagram of pressure transducer, HOBO Titanium Water Level 
Data Logger.  Diagram courtesy of Onset.   
 
Each instrument was housed in an Onset Water Logger Housing, which was a capped 
PVC pipe with a maximum diameter of 5.1 cm and length of 23.5 cm.  As shown in 
Figure 3, the pressure transducer is inserted inside and secured in place using two zip 
ties. Additionally, all the instruments were placed in additional housing constructed by a 
researcher to secure the PT’s at a fixed location and elevation above the bed and 
minimize wave interference.  The 'wells,' diagrammed in Figure 4 were designed to 
secure the pressure transducers in-situ, dampen any wave motion or disturbance in 
water surface, keep sediment away from the instrument, and provide an attachment 
point for a GPS antenna.   

Figure 3: Images of instrument housing from Onset instruction manual.  



 

 

 
Figure 4: Diagram of constructed instrument assembly.   
 
The general location of instrument deployment, pictured in Figure 5, was chosen due to 
proximity to both the island and the general marsh area that was to be measured in the 
larger study. In particular the wells were inserted into the mud at locations where a) the 
surrounding ground was not too soft, such that the researchers could stand and b) the 
elevation was low enough to capture all or the majority of the tidal cycle above MTL. 
The wells were placed relatively close to each other so that their water levels could be 
assumed constant. An atmospheric transducer was attached on the nearby dock in the 
open air. 
 
The elevation of each well was measured daily using Ashtech ProFlex 500 GPS 
Receivers with Ashtech Duel Frequency Marine Antennae. Both receivers were 
programmed to record internally for two hours at 10 second intervals and were post 
processed as stationary based stations using the National Geodetic Survey Online 
Positioning User Service. A photograph of the deployed wells with the GPS antennae 
attached is shown in Figure 6. 
 



 

 

 
Figure 5: Locations of Instrument Deployment for Pilot Study. Inset Image: general area 
relative to Rose Dhu Island, GA   
 

 
Figure 6: Deployed wells with GPS antennae attached.   
  



 

 

After processing the data, it was determined that the pressure transducers in the marsh 
sank on the order of 2cm over approximately 1 day. In addition, the error of the GPS 
base station positioning were on the order of 7 cm. Because of the well movement and 
the uncertainty associated with the GPS processing, the water levels measured 
between the two wells differed by approximately 2 cm. Due to the proximity of the two 
wells, 9 m apart, this inaccuracy was unacceptable and changes to the measurement 
techniques were developed for the final field project. In particular, the design of the well 
was modified to incorporate a plate to prevent the well from sinking into the mud.  
 
Full Field Project 
The full field project occurred from November 2 to November 6, 2014. Three pressure 
transducers (PT’s), two Nortek Vector ADV’s and one Nortek Aquadopp were deployed 
along a transect in the marsh to measure the water levels at various points along the 
transect, and to correlate the resulting pressure gradients to the velocity in a nearby 
feeder tidal creek (Aquadopp) and two additional locations higher in the marsh (Nortek 
ADV’s). The specific transect was selected to be easily accessible from the island, and 
ran perpendicular to the streamwise direction of the nearby main channel.  A map 
showing the locations of the 3 pressure transducer wells, 2 ADV’s and the Aquadopp is 
shown in Figure 7.   
 
 

 
Figure 7: Map showing the locations of the six instruments deployed during this 
experiment.  PT’s are shown as red circles and velocity measurement instruments 
(Aquadopp, ADV’s) as yellow squares. 
 
 



 

 

 
Figure 8: Pressure transducer wells with new plate (left) and deployed well being 
surveyed with GPS (right). 
 
Based on the experience from the pilot study, the pressure wells included an additional 
plate to help stabilize the well in the marsh mud. Figure 8 shows the 3 wells prior to the 
deployment as well as an example of a deployed well being measured with the GPS. 
The GPS processing was also modified by deploying an additional base station on site 
and using the GRAFNAV software for post processing. With these modifications, the 
movement of the wells was estimated to be a few millimeters and the GPS survey 
accuracy was under a centimeter. 
 
The ADV’s used in this experiment were Nortek Vector ADV’s, deployed using a 
chemistry stand and clamp to hold the flexible ADV head in place at the appropriate 
elevation above the bed.  The ADV and stand were attached to cinderblocks to prevent 
instrument shifts due to flow drag. Each ADV was set to record at 1 Hz for the duration 
of the experiment to maximize the amount of continuous deployment for four days using 
a long term deployment lithium battery. ADV’s were useable in relatively shallow water, 
needing only approximately 26 cm of total water depth to sample a point 15 cm above 
the bed.   
 
The upward looking Nortek Aquadopp was deployed in the center of the feeder tidal 
creek.  As shown in Figure 9, the Aquadopp had a specialized low lying stand resulting 
in a nearly bottom mounted instrument.  The ends of the stand were weighted with dive 
weights to avoid instrument shift. The Aquadopp measured continuously at 1 Hz with 10 
cm vertical bins. 
 
To process the velocity data, any taken during low tide (determined by instances of PT 
B having zero water depth) were discarded.  Then, any data where the average 
correlation coefficient of the three beams was less than 70% for 45 consecutive 
samples, or where the average over 300 samples of the mean correlation coefficient 



 

 

over the three beams dropped below 70% was discarded.  Next the dominant flow 
direction (if one was present) was determined for each ADV by fitting an ellipse to all the 
east and north velocity measurements for each ADV.  The major axis of the resulting 
ellipse was the new “streamwise'' flow direction (correspondingly, the minor axis is the 
cross-stream direction).  The horizontal velocity vector was rotated to correspond to the 
newly defined streamwise and cross-stream directions, then averaged over 30 sec. 
intervals. 
 

 
Figure 9: A deployed ADV stand (left) and the Aquadopp stand (right) at low tide. Note 
that the high tide water level was nearly 0.65 m above the ADV and nearly 2 m above 
the Aquadopp.  
 
Results 
Over the span of the three days of measurements, 6 high tide cycles were measured. 
Figure 10 shows the water surface elevation (WL) measurements at the three PT's for 
the fourth high tide in the dataset.  The fourth high tide was selected because it exhibits 
one of the largest tidal ranges of the six, but the general water surface elevation pattern 
was consistent across all tidal cycles. The results indicated that the water level at the 
two PT's in the marsh was quite similar.  The water level in the tidal creek (PT A - blue 
line in Figure 10) did rise a bit faster and fell quicker than the water level higher in the 
marsh (PT B - red line in Figure 10), which was to be expected, but was essentially 
identical over the majority of the tidal cycle.  In contrast, there was a clear differential 
water levels between the marsh and the main channel.  The water level in the main 
channel (PT C - green line in Figure 10) began rising at the same rate as the tidal creek 
then started to rise more rapidly approximately halfway through the rising tide.  
However, the water level in the marsh caught up and exceeded the water level in the 
main channel just before high tide and remained higher than the main channel for the 
rest of the tidal cycle.  At high tide, the water level difference between the main channel 
and the marsh was approximately 7-8 cm, but became as large as 15 cm during rising 



 

 

and falling tide.  Given that the distance between the central marsh (PT B) and the main 
channel (PT C) was less than 80 m, the observed differential water levels created a 
substantial transverse pressure gradient across the marsh.   

 
Figure 10:  Water surface elevations (WL) at each of the three PT's for the fourth high 
tide in the dataset.  
 
The results of the ellipse fitting technique to determine a primary flow direction for 
ADV07 north and east velocities along with the fitted ellipse are shown in the left panel 
of Figure 11. The velocity at this instrument was nearly entirely one-dimensional.  Once 
the horizontal velocity vector was rotated to correspond to the major axis of this ellipse, 
the overwhelming majority of the velocity magnitude was confined to the streamwise 
direction, with comparatively little cross-stream flow.  Furthermore, the difference 
between the angle of the newly defined streamwise direction and the angle of the PT 
transect (see Figure 7) was less than 9 degrees, indicating that the adjacent PT's were 
well placed to capture the pressure gradient driving the flow at this location.   
 
The water level from the main channel (PT C) is plotted against the velocity from ADV07 
in the right panel of Figure 11. As the tide rises (from right to left) during flood tide, the 
flow is initially directed from the main channel into the marsh as indicated by the positive 
velocities. However, as shown in Figure 10, the rise of the water level in the main 
channels slows down before the water level in the marsh and the pressure gradient flips 
and the flow is directed back towards the main channel prior to high tide. Interestingly, 
there is a kink in the velocity as the water level reaches close to high tide. This kink is 
most likely due to a small change in flow direction.  As the tide continues to rise and 
finally begins to fall, the speed of the velocity towards the channel continuously 
increases. 
 



 

 

The streamwise velocity at ADV07 for every tidal cycle is plotted against the 
corresponding pressure gradient in Figure 12. The relationship between the velocity and 
pressure gradient indicated a classical pressure gradient driven flow.  The points at 
which the velocities switch direction identically coincided with the pressure gradient 
switching sign.  Additionally, there appeared to be a transition in the dependence on the 
pressure gradient above 5 cm/s in which the slope of the plot shifted from the steeper 
region at lower velocity magnitudes to the milder slope region at higher velocity 
magnitudes. The change in slope appeared to occur for Reynolds numbers greater than 
approximately 15,000. Therefore, a two equation approach was used for evaluating the 
relationship between the velocity and pressure gradient for the low and high Reynolds 
number regimes. 

 
Figure 11:  ADV07 north and east velocity measurements and the ellipse fit to the data 
(left). The WL at PT C plotted as a function of the streamwise velocity from ADV07 
(right). Note that time evolves from right to left in the right panel. 
 

  
Figure 12:  Streamwise velocity (red) and Reynolds number (blue) at ADV07 for each 
tidal cycle plotted against the corresponding pressure gradient. 



 

 

 
Assuming a simple depth integrated momentum balance between the pressure gradient 
and the drag resulting from the seabed and vegetation, the relationship between the 
pressure gradient and velocity could be found as 
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where the left-hand-side is the pressure gradient from the slope of the water surface, ܥௗ 
is the drag coefficient and V is the measured velocity. For the low Reynolds numbers, a 
method by Tsihrintzis (2001) was applied to find the drag coefficient for the vegetation 
using  

ௗܥ ൌ ௛ܴߛ
ି௞     (2) 

where ߛ is a measure of the plant density, Rh is the Reynolds number based on the 
depth and k controls the functional dependence of the drag coefficient on the Reynolds 
number, governed by the type of vegetation. The parameter ߛ was found as 

ߛ ൌ   (3)     ݏ/௢ܭ2
where  ܭ௢ is an empirically determined coefficient and s is the stem spacing. Using a 
least-squares best fit, the values of ܭ௢ ൌ 10ଶ.଴ଵ and k = 0.72 was found. This agreed 
reasonably well with the range of values described by Lee et al. (2004). 
 
For the larger Reynolds numbers, an approach using a Darcy-Weisbach type friction 
factor was used. Defining a shear velocity  
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the velocity is given as 
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Using a modified version of the equation by Lindner (1983) to find the friction factor: 
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where d is the stalk diameter, α is a free parameter and ݏ௫ and ݏ௬ are the lateral and 
longitudinal plant spacing, taken to be equal in this case. The value of ܥௗ was taken to 
be 1.5 as recommended by Jarvelia (2002). Again using a least-squares fit for the data, 
α was found to be equal to 1.33. 
 
Both the low and high Reynolds number data along with the velocities predicted by the 
two different models for each measured pressure gradient are shown in Figure 13. In 
general, both the low and high Reynolds number models performed well in predicting 
the velocity for given pressure gradients. They both captured the slope of the velocity 
dependence on the pressure gradient for the different regimes. 
 
 



 

 

 
Figure 13: Predicted velocity for the low and high Reynolds number regimes.  The 
streamwise data measured at ADV07 are plotted in red, the low Reynolds number 
predicted velocities are plotted in blue, and the high Reynolds number predicted 
velocities are plotted in green. 
 
Conclusions 
As a result of this project, the transverse pressure gradient in a tidal marsh system has 
been directly measured for the first time. These types of measurements have long 
eluded researchers due to the challenges of both deploying instruments in the marsh 
and for accurately recording a consistent vertical datum for multiple instrument 
locations. The unique measurement technique developed for recording this pressure 
gradient will be utilized in future field campaigns. 
 
Analysis of the velocity and pressure gradient showed a clearly classical pressure 
gradient driven flow across the marsh. The heavy vegetative marsh induced significant 
drag on the flow, although this relationship had a critical dependence on the Reynolds 
number. Therefore, a two equation approach for low and high Reynolds number 
regimes demonstrated that existing models of flow through vegetation were capable of 
reproducing the measurements. Therefore, these types of models maybe used to 
estimate the friction coefficients in more advanced numerical models for estuary wide 
circulation. 
 
Dissemination and Training 
Two Ph.D. students (David Young and Brittany Bruder) have been partially supported 
by this project. The analysis of the data will be part of David Young’s Ph.D. dissertation 
in Spring 2016. In addition, David will be presenting the work at the Young Coastal 
Scientists and Engineers Conference at the University of Delaware in July 2015. 
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Georgia	Water	Resources	Institute	Final	Report	
Susan	B.	Wilde,	Warnell	School	of	Forestry	and	Natural	Resources	and	
Deepak	Mishra,	Geography	Department,	University	of	Georgia	
	
Implications	of	eutrophication	and	climate	change	in	promoting	toxic	cyanobacterial	
blooms	in	agricultural	ponds	across	Georgia.		
	
Excessive	nutrient	enrichment	in	watersheds	has	increased	the	prevalence	of	harmful	algal	
blooms	(HABs)	in	vital	freshwater	resources	(Anderson,	et	al.	2002,	Anderson,	et	al.	2008).		
Global	climate	change	is	predicted	to	enhance	the	frequency	and	spatial	coverage	of	HABs	
that	are	typically	composed	of	cyanobacteria	species,	which	readily	exploit	excess	nutrients	
and	thrive	in	warm,	low‐flow	systems	(Heisler,	et	al.	2008,	Moore,	et	al.	2008,	Davis,	et	al	
2009).	While	most	HABs	research	has	dealt	with	marine	and	estuarine	systems,	freshwater	
systems	have	historically	been	impacted	as	well	(Glibert	and	Burkholder,	2006,	Lewitus	et	
al.,	2003;	Lewitus	et	al.	2008).		The	excess	nutrient	inputs	resulting	from	agricultural	and	
urban	activities	in	the	southeastern	US	promote	these	blooms.	Hypereutrophic	ponds	and	
lakes	used	to	water	livestock	and	provide	public	water	supply	and	recreation	can	develop	
HABs	characterized	by	the	exponential	growth	of	planktonic	cyanobacteria	(commonly	
referred	to	as	“blue	green	algae”).	The	cyanobacteria	have	many	specialized	adaptations	
that	enable	them	to	exist	and	flourish	in	environments	that	are	inhospitable	to	most	
organisms.	They	are	capable	of	nitrogen	fixation	and	can	regulate	position	within	the	water	
column	to	access	nutrients	and/or	prevent	photooxidative	damage	under	extreme	light	
conditions	(Walsby	and	Booker,	1980).	Excess	phosphorous	availability	is	the	major	factor	
driving	cyanobacterial	growth	rates	and	has	been	shown	to	increase	toxin	production	by	
these	species	(Sivonen	and	Jones,	1999).	Nutrient	loading,	increased	retention	time,	and	
moderate	to	high	temperatures	frequently	co‐occur	in	southeastern	US	ponds	and	lakes	
creating	an	ideal	environment	for	these	cyanobacteria	to	proliferate	(Wicks	and	Thiel,	
1990).	Global	climate	change	effects,	such	as	drought	and	increased	temperatures,	
exacerbate	this	major	issue	for	the	southeast;	with	an	increase	in	temperatures	and	
drought	frequency,	the	effects	of	eutrophication	are	intensified	in	GA’s	watersheds.		During	
hot	periods	with	low	rainfall	we,	we	documented	harmful	cyanobacterial	blooms	in	
livestock	drinking	water	ponds,	golf	course	ponds,	subdivision	ponds	and	water	supply	
reservoirs	throughout	Georgia.		
	
Lakes	and	ponds	are	commonly	constructed	for	agricultural	and	recreational	purposes	in	
GA	and	across	the	southeastern	US,	but	they	can	reduce	the	quality	and	quantity	of	
downstream	water	resources	including	rivers	and	streams	already	depleted	by	drought.		In	
the	case	of	GA,	approximately	29%	of	the	state	is	agricultural	land,	making	over	9.8	billion	
dollars	in	revenue	for	the	state	(USDA:	Economic	Research	Service,	2011).	Ponds	are	
commonly	used	to	water	livestock	and	for	irrigation	reserves.	This	practice	is	likely	to	
become	more	common	in	light	of	recent	well	permit	issue	restrictions	in	drought‐stricken	
southwest	GA	(Turner,	2012).	These	artificial	farm	ponds	serve	as	a	catch	basin	for	
allochthonous	nutrient	inputs	from	fertilization	and	animal	waste.	Over	87%	of	farms	in	GA	
are	small,	family	owned	operations	with	over	60%	of	those	farms	having	only	1‐99	acres;	
thus,	their	fertilization	practices	are	not	regulated	(USDA:	Economic	Research	Service,	
2011).	Because	these	small	operations	are	not	regulated,	best	management	practices,	
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which	include	soil	testing	for	determining	the	appropriate	type	and	fertilization	rate,	may	
not	be	followed	and	fertilization	regimes	may	only	be	based	on	past	experience.	This	
scenario,	coupled	with	the	availability	of	poultry	litter	(a	common	source	of	inexpensive	
fertilizer),	can	result	in	excess	nutrients	such	as	nitrogen	and	phosphorus.	During	rain	
events	or	direct	input,	these	nutrients,	are	ultimately	transported	into	watershed	ponds	or	
streams	and	rivers	feeding	larger	reservoirs.	High	levels	of	phosphorus,	preferentially	
support	the	growth	of	cyanobacterial	and	have	been	demonstrated	to	enhance	toxin	
production	(Sivonen	and	Jones,	1999).		Eutrophication,	and	the	danger	of	lethal	
cyanobacterial	blooms,	negatively	impact	overall	water	quality,	which	in	turn	affects	the	
health	of	livestock,	pets,	wildlife,	and	humans	utilizing	the	resource.			
	
Cyanotoxins	can	cause	mortality	either	by	longterm	subchronic	doses	or	acutely	during	
high	density	toxic	algal	blooms.		The	most	common	cyanotoxic	species	throughout	the	
world	and	in	GA	is	Microcystis	aeruginosa,	which	produces	the	potent	liver	toxin	
microcystin.		While	no	state	or	federal	regulations	currently	exist	for	cyanotoxins	in	
drinking	water,	the	World	Health	organization	recommends	1	ppb	as	a	safe	level	level	in	
drinking	water.			Empirical	and	experimental	data	have	been	used	to	propose	risk	levels	for	
some	important	cyanotoxins	in	water.		The	level	found	in	the	Gwinnett,	GA	agricultural	
pond	exceeded	the	subchronic	danger	level	by	10‐fold	and	was	2X	the	acute	dose	level.		
While	conducting	additional	sampling	during	2013‐2015,	we	documented	28	additional	
locations	from	the	mountain	to	coastal	detention	ponds	where	cyanobacterial	species	
dominated	and	19	sites	had	microcystin	levels	>5	ppt.	
	
Our	research	is	addressing	fundamental	questions	regarding	critical	levels	of	limiting	
nutrients	for	initiating	and	sustaining	cyanobacterial	blooms.		These	aquatic	systems	
cannot	perform	their	ecological	or	agricultural	function	unless	optimal	watershed	
management	strategies	are	implemented.	This	project	combines	chemical	analysis,	
ecotoxicology,	watershed	assessment,	identification	and	toxic	potential	of	harmful	algal	
species,		and	animal	health	effects	to	enable	farmers	and	reservoir	managers	to	make	
changes	to	improve	both	the	health	of	their	domestic	animals	or	wildlife	and	downstream	
water	quality.	
	
While	agriculture	comprises	a	large	percentage	of	land	use	in	Georgia,	habitation	in	
general,	including	suburban	development,	adds	to	nutrient	loading	of	ponds	and	other	
freshwater	resources.	In	residential	subdivisions,	ponds	are	commonly	constructed	to	
detain	storm	water	or	as	mitigation	for	development.	The	runoff	captured	in	these	ponds	
concentrates	nutrients	from	lawn	fertilizers,	pet	wastes,	and	even	poorly	functioning	septic	
systems;	therefore,	cultural	eutrophication	can	promote	HABs	as	well	(Lewitus	et	al.	2003;	
Lewitus	et	al.	2008).	Besides	serving	as	a	sink	for	nutrient	and	stormwater	runoff,	these	
ponds	are	used	by	wildlife	and	recreationally	by	humans.	These	interactions	increase	the	
likelihood	of	human	and	pet	exposure	to	algal	toxins	directly	or	indirectly	through	trophic	
transfer	(Lewitus	et	al.	2008).	Mortality	events	due	to	acute	HABs	exposure	are	routinely	
documented	in	pets	(Van	de	Mere	et	al.,	2012).	
	
Our	overarching	objective	was	to	better	understand	the	critical	driving	forces	promoting	
harmful	cyanotoxins	in	inland	waters	and	determine	the	best	management	solutions.		In	
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cooperation	with	the	University	of	Georgia’s	Agricultural	and	Environmental	Services	
Laboratories,	we	investigated	the	relationship	among	watershed	management	practices,	
the	presence	of	harmful	cyanotoxins,	and	livestock	mortality	in	Georgia.	Analysis	was	in	
inland	waters	ranging	from	mountains	to	sea,	investigating	the	potential	impact	of	lethal	
algal	blooms	in	waters	across	diverse	physiographic	and	biogeochemical	regimes.		We	have	
a	network	of	county	extension	offices	in	place	throughout	the	state	to	assist	in	conducting	a	
landscape	level	survey	of	aquatic	sites	within	agricultural	production	watersheds	and	
evaluate	current	ecological	conditions	relative	to	existing	management	practices.		
	
Objectives:	
Monitor	and	map	sites	cyanoHABs	sites	throughout	the	state	of	Georgia.		Document	animal	
health	conditions	and/or	mortality	events	related	to	cyanotoxin	exposure	in	ponds.		
Examine	the	factors	that	promote	harmful	cyanotoxin	production	in	pond	systems	by	
measuring	multiple	abiotic	and	biotic	factors.		Assess	BMPs	lacking	in	cyanoHAB	ponds	to	
promote	specific	management	practices	effective	in	prevention	of	cyanoHABs.		Test	and	
refine	an	existing	laboratory‐based	algorithm	developed	by	Mishra	et	al.	(2009)	to	detect	
and	quantify	the	cyanobacterial	concentrations	in	Georgia	sites	using	remote	sensing	data	
from	hyperspectral	radiometers.	
	
We	aimed	to	develop	both	multispectral	Landsat	based	as	well	as	proximal	hyperspectral	
models.	As	such,	several	models	of	phycocyanin	(PC)	estimation	have	been	developed	using	
various	approaches	such	as	empirical	(Vincent	et	al,	2004,	Mishra	et	al,	2009),		semi‐
analytical	(Simis	et	al.,	2005),	and	Quasi	analytical	(Mishra	et	al,	2013).		Vincent’s	model	
applied	an	empirical	approach	for	multispectral	data	using	Landsat	ETM,	while	the	rest	
employed	hyperspectral	proximal	sensing	data.	In	this	study,	the	first	data	sets	collected	
(June	16th,	2014)	was	used	for	model	calibration	and	the	second	set	of	field	data	(July	2nd,	
2014)	was	used	for	model	validation.	Based	on	the	models	developed	by	Vincent	et	al	
(2004),	two	other	models	were	developed	based	on	the	stepwise	regression	approach,	
using	Landsat	8	spectral	bands	instead	of	Landsat	7	used	in	the	original	study.	In	addition,	
we	also	tested	a	multiple	linear	regression	and	slope	difference	models	using	combinations	
of	visible	and	NIR	bands.	The	best	model	was	selected	based	on	statistical	parameters	such	
as	coefficient	of	determination	(R2)	and	Percent	Normalized	Root	Mean	Square	Error	
(%RMSE)	as	detailed	in	Lee	et	al.	(2002).			The	selected	model	was	applied	to	the	Landsat	8	
subsets	to	produce	time	series	composites	of	PC	concentrations	and	distributions.		
	

	
Methods	
Pond	locations	with	harmful	algal	blooms	(HABs)	were	identified	using	University	of	
Georgia’s	(UGA)	Agriculture	and	Environmental	Service	laboratory	(AESL)	and	previous	
HAB	site	data	collected	by	Wilde	lab	at	Warnell	School	of	Forestry	and	Natural	Resources.	
Additional	pond	locations	were	added	in	locations	within	counties	where	cyanoHAB’s	were	
documented.	Sites	from	piedmont	Georgia	were	monitored	more	frequently	to	track	
seasonality	of	cyanoHABs.		At	each	site,	duplicate	50mL	water	samples	were	collected	for	
algal	enumeration,	toxin	analysis,	and	nutrient	analysis.	Samples	were	collected	during	
mid‐day,	representing	the	peak	of	bloom	formation.	In	addition	to	water	samples	pH,	
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dissolved	oxygen,	turbidity,	and	water	temperature	were	measured	using	a	hand‐held	
multimeter.		
	
Phytoplankton	identifications	and	cell	counts,	using	a	hemacytometer,	were	performed	
using	light	microscopy.	Samples	with	relatively	high	(>10,000	cells/mL)	of	toxigenic	
species	were	analyzed	for	microcystin	using	the	commercially	available	ELISA	(Abraxis	
Bioscience,	www.abraxiskits.com).		We	conducted	water	chemistry	on	a	subset	of	samples	
including:	pH,	Hardness,	Phosphorus	and	Nitrogen	(total	and	dissolved).	
	
Sites	were	evaluated	to	assess	whether	BMPs	were	followed	or	if	additional	safeguards	
should	be	put	in	place	to	in	prevent	further	eutrophication.		The	BMPs	utilized	will	be	
based	upon	pond	usage	(i.e.	agricultural	vs.	urban	pond).	Considering	the	potential	
variability	among	ponds,	pond	management	will	follow	BMP	recommendations	from	both	
the	U.S.	EPA	for	urban	ponds	and	USDA	–	NRCS	for	agricultural	ponds.		
	
Hyperspectral	remote	sensing	reflectance	data	was	acquired	from	selected	water	sample	
collection	sites	using	a	dual	sensor‐system	with	two	inter‐calibrated	Ocean	Optics	
spectroradiometers	(Ocean	Optics	Inc.,	Dunedin,	FL,	USA)	as	described	in	DallO’lmo,	et	al.	
(2005).	The	hyperspectral	remote	sensing	reflectance	data	is	in	the	range	400‐900	nm	with	
a	sampling	interval	of	0.3	nm.	Radiometer	1,	equipped	with	a	25°	field‐of‐view	optical	fiber	
will	measure	the	upwelling	radiance	just	below	the	air‐water	interface,	expressed	in	digital	
numbers	as	DNLu(λ);	whereas,	radiometer	2,	equipped	with	an	optical	fiber	and	cosine	
diffuser	(yielding	a	hemispherical	field	of	view)	acquired	above	surface	down	welling	
irradiance,	expressed	in	digital	numbers	as	DNEd(λ).	To	match	their	transfer	functions,	
inter‐calibration	of	the	radiometers	was	accomplished	by	measuring	the	upwelling	
radiance	of	a	white	Spectralon	reflectance	standard	(Labsphere,	Inc.,	North	Sutton,	NH,	
USA)	simultaneously	with	incident	irradiance.	The	two	radiometers	were	inter‐calibrated	
immediately	before	and	after	measurements	in	each	field	site.	After	the	data	acquisition,	
remote	sensing	reflectance	(Rrs	expressed	in	sr‐1)	was	calculated	as	follows:	
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where,	t	is	the	transmittance	at	the	air‐water	interface	(0.98);	n	is	the	refractive	index	of	
water	(1.34);	DNLu,ref	and	DNEd,ref		are	digital	numbers	representing	upwelling	radiance	and	
downwelling	irradiance	over	the	white	Spectralon	panel;	ρref	is	the	irradiance	reflectance	of	
the	Spectralon	panel;	Fi	(λ)	is	the	spectral	immersion	factor	(Ohde	and	Siegel,	2003).	For	
each	sampling	location,	consecutive	scans	were	recorded	and	further	averaged	to	calculate	
a	representative	Rrs(λ)	spectrum	using	a	handheld	USB	4000	hyperspectral	radiometer	
(Ocean	optics	Inc.,	FL).		The	primary	goal	of	this	part	of	the	project	was	to	test,	fine‐tune,	
and	transform	an	existing	laboratory‐based	algorithm	developed	by	Mishra	et	al.	(2009)	to	
detect	and	quantify	the	cyanobacterial	concentrations	in	GA	waters	using	remote	sensing	
data	from	hyperspectral	radiometers.		
	
Cloud	and	shadow	masking:	
To	get	rid	of	the	residual	clouds	and	shadows,	we	compared	3	methods	to	detect	cloud	and	
cloud	 shadows	 in	 Landsat	 8	 images,	 including	 an	 object	 based	 cloud	 and	 cloud	 shadow	
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algorithm	Fmask	(Zhu	and	Woodcock,	2012),	pixel‐based	supervised	classification	method	
using	 Maximum	 Likelihood	 Classification	 (MLC),	 as	 well	 as	 object‐based	 supervised	
classification	 using	 K	 Nearest	 Neighbors	 (KNN)	 method.	 Involving	 Landsat	 Top	 of	
Atmosphere	(TOA)	reflectance	and	Brightness	Temperature	(BT)	data	as	inputs,	the	Fmask	
algorithm	 computes	 a	 cloud	mask	 from	 a	 probability	mask	 and	 a	 scene‐based	 threshold	
based	on	the	spectral	variability,	brightness,	and	temperature	information	extracted	from	
inputs,	as	well	as	cloud	physical	properties.	Both	pixel‐based	and	object‐based	supervised	
classifications	were	conducted	using	five	 layers	 including	blue,	green,	red,	 infrared	bands	
and	 Normalized	 Difference	 Vegetation	 Index	 (NDVI)	 layer.	 Mixed	 pixels	 of	 water	 and	
vegetation	areas	were	excluded	 first	according	 to	NDVI	values.	Then	MLC	was	applied	 to	
identify	 water,	 cloud	 and	 cloud	 shadow	 classes	 within	 the	 five	 layers.	 Multiresolution	
image	 segmentation	 was	 utilized	 first	 to	 segment	 images	 into	 different	 objects	 before	
classification.	 Then	 the	 sample	 space	 were	 chosen	 based	 on	 the	 mean	 and	 standard	
deviation	 of	 each	 layers	 and	 object	 samples	 were	 selected	 for	 water,	 cloud	 and	 cloud	
shadow	 classes.	 Then	 KNN	 classification	 method	 was	 applied	 to	 classify	 objects	 into	
different	 classes.	 Finally,	 the	 performances	 of	 all	 three	methods	were	 assessed	 based	 on	
visual	interpretation	and	the	object‐based	classification	was	chosen.		
	
Algorithm	development	and	application:	
We	aimed	to	develop	both	multispectral	Landsat	based	as	well	as	proximal	hyperspectral	
models.	As	such,	several	models	of	phycocyanin	(PC)	estimation	have	been	developed	using	
various	 approaches	 such	 as	 empirical	 (Vincent	 et	 al,	 2004,	 Mishra	 et	 al,	 2009),	 	 semi‐
analytical	 (Simis	et	al.,	2005),	 and	Quasi	analytical	 (Mishra	et	al,	2013).	 	Vincent’s	model	
applied	 an	 empirical	 approach	 for	multispectral	 data	 using	 Landsat	 ETM,	while	 the	 rest	
employed	hyperspectral	proximal	 sensing	data.	 In	 this	 study,	 the	 first	data	 sets	 collected	
(June	16th,	2014)	was	used	for	model	calibration	and	the	second	set	of	field	data	(July	2nd,	
2014)	 was	 used	 for	 model	 validation.	 Based	 on	 the	 models	 developed	 by	 Vincent	 et	 al	
(2004),	 two	 other	 models	 were	 developed	 based	 on	 the	 stepwise	 regression	 approach,	
using	Landsat	8	spectral	bands	instead	of	Landsat	7	used	in	the	original	study.	In	addition,	
we	also	tested	a	multiple	linear	regression	and	slope	difference	models	using	combinations	
of	visible	and	NIR	bands.	The	best	model	was	selected	based	on	statistical	parameters	such	
as	 coefficient	 of	 determination	 (R2)	 and	 Percent	 Normalized	 Root	 Mean	 Square	 Error	
(%RMSE)	as	detailed	in	Lee	et	al.	(2002).			The	selected	model	was	applied	to	the	Landsat	8	
subsets	to	produce	time	series	composites	of	PC	concentrations	and	distributions.		
	
Results:	
	
Mapping	HAB	sites,	documenting	toxicity	and	effects	on	livestock		
Sample	were	collected	from	sites	within	all	of	the	Level	III	Ecoregions	of	Georgia	(Ridge	
and	Valley,	Blue	Ridge,	Piedmont,	Southeastern	Plains,	and	Southern	Coastal	Plain)	(Figure	
1).		While	samples	were	collected	from	March‐December,	the	cyanoHABs	were	most	
prevalent	during	June‐September	when	water	temperatures	exceeded	30°C	in	surface	
waters	of	ponds	and	lakes	were	thermally	stratified.		Dissolved	oxygen	levels	were	limiting	
for	fish	and	other	aquatic	biota	(<2ppt)	below	the	thermocline	in	all	of	the	lakes	with	
cyanoHAB’s.			
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Phosphorus,	chlorophyll,	and	secchi	disk	transparency	ranged	oligotrophic	in	some	
locations	within	the	large	Georgia	Power	Reservoirs	to	hyper‐eutrophic	within	many	of	the	
small	farm	ponds	with	ongoing	cyanoHABs.	Carlson	(1996)	used	index	values	for	
chlorophyll,	Phosphorus,	secchi	disk	to	categorize	trophic	classes.	
	
Trophic	Index		 Chl	(μL‐1)	 P	(μL‐1)	 SD	(m)		 Trophic	Class	
<30—40	 	 0—2.6		 0—12	 	 >8—4	 	 Oligotrophic	
40—50	 	 2.6—20	 12—24	 4—2	 	 Mesotrophic	
50—70	 	 20—56	 24—96	 2—0.5		 Eutrophic	
70—100+	 	 56—155+	 96—384+	 0.5—<0.25	 Hypereutrophic	
Watersheds	represented	combinations	of	agricultural	(cattle,	chicken	houses,	and	crop	
production),	subdivisions,	and	golf	courses.			Water	collected	in	all	ecoregions	from	farm	
ponds,	fishing	ponds	and	a	recreational	swimming	lakes	had	frequent	detections	of	harmful	
algal	blooms	(>10,000	cells/ml)	of	toxigenic	species.			The	most	common	species	was	
Microcystis	aeruginosa,	additional	cyanoHAB	species	included	Aphanizomenon	flos‐aquae,	
Lyngbya	wollei,	and	Oscillatoria	sp.			Microcystin	concentrations	>5ppb	were	detected	in	
19/33	sites.			Sick	or	dead	cattle	were	noted	at	7	of	the	sites	evaluated.		
	

	
Figure	1.		CyanoHABs	were	detected	in	all	ecoregions	throughout	Georgia	in	agricultural	
watersheds.		Red	icons	represent	ponds	with	bloom	densities	(>10,000/ml)	toxigenic	cyanoHAB	

species	in	agricultural	(cattle	 ,	chickens ,	crops )	golf	courses 	and	subdivisions .		No	
cyanoHABs	were	documented	in	the	forested	watersheds	 .	
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Table	1.		Water	samples	from	various	counties	throughout	Georgia	evaluated	for	cyanoHAB’s	and	
cyanotoxins	were	initiated	following	the	observance	of	discolored	pond	water	or	sickened/dead	
cattle.	
County  Watershed  Primary use  Toxigenic species  Toxin 

(microcytin)  
Cattle 

Appling  Agriculture/
suburban 

Recreational 
swimming 

M.aeruginosa  >10 ppb 

Dade  Agriculture  Cattle watering  M.aeruginosa  nd  2 dead* 
Dade  Agriculture  Cattle watering  M.aeruginosa  >5 ppt 
Elbert  Agriculture  Cattle watering  M.aeruginosa  >5 ppt 
Elijay  Agriculture  Cattle watering  M.aeruginosa  nd 
Emanuel  Agriculture  Recreational 

fishing 
M.aeruginosa  >10 ppb 

Grady  Agriculture  Cattle watering  nd  nd  8 dead* 
Greene  Agriculture  Cattle watering  nd  nd 
Gwinnett  Agriculture  Cattle watering  M.aeruginosa  >10 ppb  4 dead 
Gwinnett  Agriculture/

suburban 
Cattle watering  M.aeruginosa  >10 ppb 

Gwinnett  Agriculture  Cattle watering  M.aeruginosa  >10 ppb 
Gwinnett  Agriculture/

suburban 
Cattle watering  M.aeruginosa  >10 ppb 

Gwinnett  Agriculture  Cattle watering  nd  nd 
Gwinnett  Agriculture/

suburban 
Cattle/fishing  M.aeruginosa  >10 ppb 

Gwinnett  Agriculture/
suburban 

Recreational 
fishing 

M.aeruginosa  nd 

Habersham  Agriculture  Cattle watering  nd  nd 
Irwin  Agriculture  Cattle watering  M.aeruginosa  >10 ppb 
Johnson  Agriculture  Cattle watering  nd  nd  4 dead* 
Johnson  Agriculture  Cattle watering  M.aeruginosa  >5 ppt 
Madison  Agriculture  Cattle watering  M.aeruginosa  >5 ppt 
Madison  Agriculture  Cattle watering  M.aeruginosa  >10 ppb  2 sick 
McDuffie  Agriculture/

suburban 
Recreational 
fishing 

Lyngbya wollei, 
M.aeruginosa 

>5 ppt 

Meriweather   Agriculture  Cattle watering  M.aeruginosa  nd 
Meriweather   Agriculture  Cattle watering  M.aeruginosa  nd 
Monroe  Agriculture/

suburban 
Recreational 
fishing 

M.aeruginosa  >5 ppt 

Morgan  Agriculture/
suburban 

Cattle/fishing  M.aeruginosa  nd 

Morgan  Agriculture/
suburban 

Recreational 
fishing 

Oscillatoria  nd 
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Oconee  Agriculture  Cattle watering  Aphanizomenon flos‐aquae 

Spaulding  Agriculture  Cattle watering  M. aeruginosa, 
Aphanizomenon 

flos‐aquae 

nd  2 sick 

Thomas  Agriculture/
suburban 

Recreational 
fishing 

M.aeruginosa  >5 ppt 

Thomas  Agriculture  Cattle/fishing  M.aeruginosa  >5 ppt 
Troup  Agriculture/

suburban 
Cattle/fishing  M.aeruginosa  >5 ppt 

Wilcox  Agriculture  Cattle watering  M.aeruginosa  >10 ppt 
Wilcox  Agriculture/

suburban 
Recreational 
fishing 

M.aeruginosa  nd 

	*Suspected	cattle	poisonings:	Dead	and	sick	cattle	were	reported	by	owners.		
	
This	cattle	watering	pond	in	Oconee	County	(Figure	2)	provides	an	example	of	a	cultivated	
watershed	for	a	small	cattle‐watering	pond	without	vegetated	pond	buffers.		An	Irwin	
County	cattle	watering	pond	and	Troup	County	recreational	fishing	ponds	have	obvious	
cyanoHAB’s	visible	in	the	Google	Earth	image	from	August	2014	(Figure	3,	4).			
	

	
Figure	2.		Cattle	watering	pond	in	Oconee	County	with	dense	bloom	of	Aphanizomenon	flos‐aquae.			
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Figure	3.		Cattle	watering	pond	in	Irwin	County	is	surrounding	by	cultivated	watershed	and	lacks	
vegetated	pond	buffers.	

	
Figure	4.		These	cattle	watering	pond	and	adjacent	recreational	fishing	ponds	in	Troup	County	also	
demonstrated	the	consequences	of	a	lack	of	BMP’s	in	this	agricultural	landscape.		2/5	ponds	had	
cyanoHABs	during	July‐August	2014.	
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Harmful	algal	blooms	are	monitored	worldwide	using	various	techniques,	including	remote	
sensing.	Freshwater	blooms	typically	consist	of	cyanobacteria	species;	a	clade	of	organisms	
with	a	unique	pigment	known	as	phycocyanin.	Current	remote	sensing	efforts	targeting	
cyanobacteria	(HABs)	have	been	able	to	exploit	the	organisms’	phycocyanin	spectral	
signature	evident	around	620	nm.	Many	researchers	have	received	viable	signals	for	this	
pigment	(Ruiz‐Verdu	et	al.	2008;	Song	et	al.	2013).	Cyano‐HABs	can	be	remotely	sensed	
using	spectral	bands	available	in	the	Medium	Resolution	Imaging	Spectrometer	(MERIS),	
onboard	ENVISAT,	based	upon	the	pigment	phycocyanin	(Simis	et	al.	2007).	Their	results	
were	ultimately	limited	in	conditions	where	low	phycocyanin	concentrations	were	evident,	
but	high	chlorophyll	concentrations	were	present.	One	of	the	main	problems	in	remote	
sensing	cyanobacterial	blooms	is	the	presence	of	chlorophyll.	High	chlorophyll	
concentrations	tend	to	inflate	phycocyanin	concentrations	based	upon	remote	sensing	data	
(Mishra	et	al.	2009,	Simis	et	al.	2005).	Studies	by	Mishra	et	al.	(2009)	compared	various	
algorithms	for	properly	predicting	phycocyanin	concentrations	and	concluded	that	a	700	
and	600	spectral	band	ratio	was	much	less	sensitive	to	chlorophyll.	
	
Our	research	built	upon	these	studies	while	incorporating	high	resolution	Landsat	8	data.	A	
combination	of	satellite	imagery	and	in‐situ	ancillary	data	will	be	used	to	validate	and	
calibrate	four	proposed	spectral	band	ratio	models:	1)	Vincent’s	single	band	and	band	ratio	
models	(2004);	2)	Schalles	and	Yacobi’s	model	(2000);	3)	stepwise	band	ratios,	and	4)	
multiple	linear	regression	slope	model.		These	models	will	help	to	develop	a	
spatiotemporal	cyanobacterial	detection	tool	and	the	production	of	cyanobacterial	
distribution	maps.	Ultimately,	these	products	will	help	configure	reservoir	management	
strategies	to	promote	optimal	aquatic	ecosystem	health.		
	
Using	NASA’s	newest	Landsat‐8	satellite	data,	we	can	frequently	detect	and	predict	water	
bodies	at	highest	risk	over	wide	landscapes.		Four	inland	reservoirs	located	in	the	Georgia	
Piedmont	were	identified	for	analysis	and	include:	1)	Lake	Oconee,	GA	(33.45°,	‐83.26°);	2)	
Lake	Sinclair,	GA	(33.19°,	‐83.28°);	3)	Lake	Juliette,	GA	(33.05°,	‐83.79°);	4)	Jackson	Lake,	
GA	(33.37°,	‐83.86°)	(Figure	5).	These	Georgia	Power	Reservoirs	are	multi‐use	and	provide	
various	services	such	as	electricity	and	drinking	water.	Lake	Oconee	was	created	in	1979	
after	Georgia	Power	constructed	the	Wallace	Dam	on	the	Oconee	River.	It	is	the	second	
largest	reservoir	in	Georgia	and	covers	a	7710	ha	area.	Lake	Oconee	drains	into	Lake	
Sinclair,	a	6200	hectare	lake,	made	in	1953	after	the	construction	of	the	Sinclair	Dam.	
Jackson	Lake,	one	of	the	oldest	reservoirs	in	Georgia,	was	made	after	the	construction	of	
the	Lloyd	Shoals	Dam	in	1910.	Despite	being	relatively	small	(1922	hectares	and	less	than	
half	the	size	of	Lake	Sinclair),	it	can	provide	up	to	21,000	kilowatts	of	electricity.	Lake	
Juliette,	a	1456	ha	reservoir	near	Macon,	GA,	is	primarily	used	as	a	source	of	cooling	for	a	
coal‐fired	power	plant.	The	lake	also	provides	recreational	opportunities	to	the	
surrounding	community.	All	sites	are	in	the	Piedmont	region	of	Georgia	with	trophic	status	
ranging	from	oligotrophic	to	mesotrophic.		
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Figure	5:	Four	Georgia	Power	Reservoir	evaluated	in	the	remote	sensing	study	of	cyanopigments	as	
a	predicted	tool	for	cyanoHABs	were;	Lake	Oconee	(a,	b),	Lake	Sinclair	(c),	Lake	Jackson	(d),	and	
Lake	Juliette	(e).	
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Mapping	Results	

Atmospheric	Correction:	
After	 comparison	 between	 spectral	 profiles	 post‐FLAASH	 and	 DOS	 correction,	 it	 was	
evident	 that	 FLAASH	 was	 able	 to	 remove	 atmospheric	 noise	 in	 the	 visible	 range	 of	 the	
spectrum,	 particularly	 in	 the	 lower	 wavelengths.	 DOS	 on	 the	 other	 hand	 was	 unable	 to	
correct	 for	 atmospheric	 noise	 in	 the	 blue	 region	 of	 the	 spectrum,	 as	 evident	 from	 the	
absence	of	chlorophyll	absorption	in	wavelengths	between	400	to	500	nm	(Band	2,	Blue)	
(Figure	 3a	 and	 b).	 The	 FLAASH	 corrected	 spectra	 showed	 a	 prominent	 chlorophyll	
absorption	 feature	 between	 450	 ‐	 500	 nm	 ranges	 (Blue	 Band).	 Further,	 GER	 spectral	
bandwidths	showed	spectral	response	patterns	similar	to	FLAASH	corrected	spectra	than	
DOS.	Therefore,	FLAASH	was	the	chosen	method	of	atmospheric	noise	removal,	and	applied	
to	entire	set	of	images	downloaded	for	the	study	period	(Figure	4)	

	

	

	

	
Cloud	and	Shadow	Masking:	
Regarding	the	performances	of	all	three	methods,	though	Fmask	can	identify	the	clouds	and	
shadows	as	a	pair,	it	cannot	direct	accurate	boundaries.	As	water	bodies	may	have	similar	
digital	 number	 (DN)	 values	 to	 shadows,	 it	 is	 difficult	 to	 distinguish	 water	 bodies	 and	
shadows	 simply	 using	 pixel‐based	 classification.	 As	 a	 result,	 cloud	 and	 cloud	 shadow	

Figure 3: Comparison between spectral profiles extracted from DOS and FLAASH atmospheric 
correction of Landsat 8 images (May 12, 2014) 

Figure 4: Comparison between spectral profiles extracted from Pre and Post atmospheric 
correction of Landsat 8 images (May 12, 2014) 
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boundaries	were	created	using	object‐based	image	classification	results.	Example	of	cloud	
and	 shadow	masking	 is	 illustrated	 in	 Figure	 5,	 using	 Landsat	 8	 image	 on	May	 12,	 2014;	
with	 the	 yellow	 areas	 masking	 out	 the	 clouds	 and	 the	green	 areas	 masking	 out	 the	
shadows.	 Final	 water	 boundaries	 were	 applied	 to	 create	 time	 series	 maps	 for	 PC	
concentrations.		

	

	
	
Model	Calibration	and	Validation:	
Independent	 datasets	were	 used	 for	 both	 calibration	 and	 validation	 (first	 field	 trip	 data	
used	 for	 calibration;	 second	 for	 validation).	 	 Several	 existing	 models	 for	 PC	 remote	
estimation	were	applied	 in	 this	study.	 	Empirical	models	solely	on	statistical	 relationship	
between	 remote	 sensing	 reflectance	 and	 phycocyanin	 concentrations;	 and	 as	 such	 are	
much	 simpler	 in	 nature	 as	 compared	 to	 semi‐empirical	 and	 analytical	models,	 however,	
with	 limited	applicability.	Vincent’s	 (2004)	single	bands	and	band	ratio	empirical	models	
derived	 from	 stepwise	 regression	 were	 tested	 using	 the	 field	 data,	 however,	 the	
performance	of	 these	models	were	not	 satisfactory	when	 tested	 for	 our	 study	 area,	with	
model	errors	exceeding	79%.		
		
Vincent	 (2004)	 used	 stepwise	 regression	 for	 estimating	 the	 phycocyanin	 concentrations.	
Stepwise	regression	has	ability	 to	 include	only	significant	variables	 into	the	model,	when	
there	are	too	many	variables	involved.		On	the	other	hand,	multi‐linear	regression	is	often	
considered	when	there	are	few	variables	to	be	included.		The	single	band	model	was	used	
with	 the	 consideration	 to	 highlight	 important	 bands	 that	 are	 correlated	 to	 phycocyanin	
concentrations.	 Some	 studies	 have	 used	 band	 ratios	 as	 independent	 variables	 in	 the	
stepwise	 model.	 Using	 the	 band	 ratio	 has	 several	 advantages	 for	 estimating	 water	
constituents.	 	First,	 it	 can	 be	 used	 to	 represent	 the	 most	 sensitive	 as	 well	 as	 the	 least	
sensitive	bands	to	a	certain	water	quality	parameter.	This	combination	helps	retrieve	good	
predictors	 for	estimating	water	constituents.	 	Secondly,	band	ratios	can	be	used	to	cancel	
out	the	unknown	parameters	related	to	a	variable.	

For	 our	 study,	 stepwise	 regressions	using	both	 single	bands	 as	well	 as	 band	 ratios	were	
used	as	model	 inputs.	 In	addition,	a	multi‐linear	regression	model	 for	slope	between	two	

Figure 5: Pre and post cloud and cloud-shadow masking of Landsat 8 images (May 12, 2014) 
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bands	as	independent	variables	was	also	developed.	 	Here,	two	slope	variables,	which	are	
slope	 between	 green	 and	 red	 bands	 (slope_GR),	 and	 slope	 between	 red	 and	 NIR	
(slope_NIR),	were	included.		The	basis	for	using	slope	as	a	variable	is	because	of	variations	
in	 green,	 red,	 and	 NIR	 that	 might	 be	 attributed	 to	 variations	 in	 phycocyanin	
concentrations.	 	To	 extend	 the	 possibility	 of	 finding	 the	 best	model,	 additional	 stepwise	
regression	 models	 were	 developed	 using	 combinations	 of	 single	 bands,	 band	 ratio,	 and	
slope	 variables.	 	Figure	 6	 summarizes	 the	 performances	 of	 models	 tested	 in	 this	 study.	
After	comparisons	of	co‐efficient	of	determination	(R2),	and	percent	normalized	RMSE,	we	
chose	 the	 model	 developed	 from	 stepwise	 regression	 using	 single	 band	 variables,	 for	
mapping	phycocyanin	concentrations.	The	residuals	using	this	model	showed	no	trends	of	
over	or	under‐estimation	(Fig.	7)	

	

Various	 factors	 might	 have	 contributed	 to	
errors	 and	uncertainties	 associated	with	 the	
results.	Considering	that	our	field	data	had	to	
correspond	with	 Landsat	 8	 overpass	 events,	
all	 data	 collection	 had	 to	 be	 weather	
dependent.	 As	 such,	 field	 trips	 could	 not	 be	
conducted	 under	 unfavorable	 weather	
conditions.	 In	 addition,	 unavoidable	 data	
collection	 and	 processing	 errors	 and	
sampling	 biases	 cannot	 be	 ruled	 out.	
However,	the	results	obtained	so	far	provides	
enough	 confidence	 that	 the	 models	 can	 be	
refined	 and	 made	 more	 robust	 using	
additional	field	data.		

	
	
	
	

Figure 6: Phycocyanin models tested using Landsat 8 data. Blue bars represent coefficients of 
determination (R2); green bars represent percent normalized root mean squared error (%RMSE). 

Figure 7: Residuals for theStepwise 
regression band ratio for phycocyanin. 
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Time	Series	Composites:	
Sample	time	series	composites	were	prepared	using	stepwise	regression	with	band	ratio	
input.	The	time	series	composites	were	utilized	to	investigate	the	spatio‐temporal	
variations	of	CyanoHABs	in	the	four	lakes	chosen	for	this	study	(Figure	6).	
		

	
Figure	6:	Time	series	composites	showing	phycocyanin	concentrations	(ppb)	throughout	study	
sites	using	a	stepwise	regression	band	
	
Once	a	model	is	selected	thereafter,	time‐series	maps,	and	further	quantitative	analysis	of	
the	spatio‐temporal	trends	of	CyanoHABs	can	be	performed.	These	composites,	additional	
tools	and	products	will	assist	state	wide	environmental	agencies	in	Georgia	when	making	
efficient	water	management	decisions	to	prevent	public	exposure	to	these	harmful	algal	
blooms	occurrences	through	periodic	monitoring,	detection	and	prediction.	Furthermore,	
the	models	developed	can	also	be	tested	on	other	inland	water	bodies	facing	similar	
problems	from	CyanoHABs.	
	
Conclusion	
In	Georgia	watersheds	experiencing	the	effects	of	nutrient	loading	from	both	agriculture	
and	storm‐water	runoff	paired	with	increased	temperature	and	drought	due	to	climate	
change,	HABs	have	the	potential	to	affect	9.8	million	people	with	health	risks	and	impart	
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economic	losses	to	livestock	producers.	Previous	reports	by	Hoagland	et	al.	(2002)	and	
Anderson	et	al.	(2000)	have	estimated	economic	impacts	from	HABs	on	public	health,	
commercial	fisheries,	recreation/tourism,	and	management	ranging	from	$34	to	$82	
million	dollars	annually.	Considering	the	economic	losses,	statewide	sampling	and	
monitoring	is	needed	in	order	to	get	an	accurate	representation	of	HAB	effects	and	to	
determine	a	means	to	restore	impaired	watersheds.	
	
Understanding	the	dynamics	of	the	microbiota	in	agricultural	ponds	used	for	livestock	
drinking	water	will	enable	us	to	improve	water	quality,	minimize	cyanobacterial	blooms,	
and	protect	animal	health.		Toxicities	associated	with	HABs	will	be	determined	in	
laboratory	assessments	using	fish	and	aquatic	invertebrates	to	provide	information	
concerning	risk.	By	incorporating	evidence	of	potential	toxicity,	HABs	can	be	predicted	and	
appropriate	management	practices	can	decrease	the	frequency	of	dangerous	toxin	levels	in	
agricultural,	subdivision,	and	drinking	water	impoundments.		
	
This	research	addressed	fundamental	questions	regarding	critical	biotic	and	abiotic	factors	
necessary	to	initiate	and	sustain	a	HAB.		Identifying	these	factors	will	inform	management	
decisions.	Furthermore,	development	of	a	remote	sensing	method	to	detect	and	quantify	
bloom‐forming	species	will	greatly	improve	the	speed	and	accuracy	of	monitoring	efforts	
that	are	currently	confined	to	laboratories	with	skilled	algal	taxonomists	and	expensive	
microscopes.	
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NIWR-USGS
Internship

Supplemental
Awards Total

Undergraduate 0 0 0 0 0
Masters 3 0 0 0 3
Ph.D. 5 0 0 0 5

Post-Doc. 1 0 0 0 1
Total 9 0 0 0 9
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Notable Awards and Achievements

NATIONAL CLIMATE ASSESSMENT

The National Climate Assessment (NCA) is carried out under the auspices of the U.S. Global Change
Research Program and aims to assess the science of climate change and its impacts across the United States,
now and throughout this century. It documents climate change related impacts and responses for various
sectors and regions, with the goal of better informing public and private decision-making at all levels.

A team of more than 300 experts, guided by a 60-member National Climate Assessment and Development
Advisory Committee produced the 3rd Climate Assessment Report with input from public and private sector
stakeholders, resource and environmental managers, researchers, representatives from businesses and
non-governmental organizations, and the general public.

The assessment draws from a large body of scientific peer-reviewed research, technical input reports, and
other publicly available sources; all sources meet the standards of the Information Quality Act. The report was
extensively reviewed by the public and experts, including a panel of the National Academy of Sciences, the
13 Federal agencies of the U.S. Global Change Research Program, and the Federal Committee on
Environment, Natural Resources, and Sustainability.

The 3rd NCA Report summarizes recent advances and findings in climate change science; assesses the
climate change impacts within and across key societal and environmental sectors (i.e., human health, water,
energy, transportation, agriculture, forests, and ecosystems and biodiversity) and U.S. regions (i.e., Northeast,
Southeast and Caribbean, Midwest, Great Plains, Southwest, Northwest, Alaska, and Hawai‘i and the U.S.
affiliated Pacific Islands, as well as coastal areas, oceans, and marine resources); assesses the current state of
responses to climate change, including adaptation, mitigation, and decision support activities; highlights major
gaps in science and research to improve future assessments; and describes a vision for and components of an
ongoing, long-term assessment process.

GWRI's Director, Dr. Aris Georgakakos, led the development of the NCA Water Resources chapter and
contributed to the southeast impact assessment.

The NCA report and associated materials are available at http://nca2014.globalchange.gov.

SUSTAINABLE WATER MANAGEMENT IN THE APALCHICOLA-CHATTAHOOCHEE FLINT(ACF)
RIVER BASIN

The development of an equitable ACF water sharing compact has challenged Alabama, Florida, and Georgia
for more than two decades. Among the outstanding critical needs are (i) inclusive and effective stakeholder
participation in planning and management processes; and (ii) development of comprehensive and reliable
information and knowledge pertaining to the interdependencies of the basin water uses and their local and
basinwide impacts.

The ACF Stakeholders (ACFS; http://acfstakeholders.org/) was established in 2010 to address the need for
effective stakeholder participation and the development of a sustainable water management plan. ACFS is an
inclusive 503(c) nonprofit organization with membership from 56 river basin stakeholders and is open to any
group with interest in the ACF water management--cities, lake associations, farmers, industries,
environmental citizen groups, power companies, fishermen, NGO's, and many others.
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Under this project, GWRI is developing the technical information and knowledge base necessary to inform the
stakeholder discussions toward a consensus and sustainable ACF water management plan. The main project
tasks include:

-Comprehensive assessment of the historical ACF basin unimpaired inflows;

-Development of modeling tools for (1) river and reservoir simulation, (2) reservoir optimization, and (3)
estuary hydrodynamic flow and salinity assessments;

-Systematic and integrated use of the modeling tools to quantify the benefits, impacts, and tradeoffs of various
water management alternatives formulated by the ACF stakeholder caucuses;

-Communication of assessment findings to ACF stakeholder through several interactive workshops;

-Development of reservoir regulation policies and other management strategies reflecting and realizing the
stakeholder shared vision for sustainable water management.

In May 2015, ACF Stakeholders, Inc. (ACFS) completed and unanimously approved a Sustainable Water
Management Plan (SWMP) for equitably managing water in the Apalachicola, Chattahoochee and Flint River
Basin, including its impact on the Apalachicola Bay.

The official ACF press release is available at
http://acfstakeholders.org/wp-content/uploads/2015/05/ACF-Stakeholders-May-13-2015-Press-Release.pdf.

The Draft Executive Summary of the plan is available at
http://gwri.gatech.edu/sites/default/files/files/announcements/acfs_sustainable_water_management_plan_draft_executive_summary_05_13_2015.pdf.
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